| class |
date |
subjects |
reading |
cwr |
prob |
due |
lab |
due |
| 01 M |
Dec 02 |
Overview; assessment |
1, 3.1 |
C-01 |
P-01 |
|
L-00 |
|
| 02 T |
03 |
Differential equations; solutions; boundary conditions |
3.2 |
C-02 |
|
|
|
|
| 03 R |
05 |
Interpolation theory; global, local interpolating functions |
3.2, 4.3 |
C-03 |
|
|
|
|
| 04 F |
06 |
Method of weighted residuals; finite element bases; matrix integrals - 1D SS conduction |
3.3-4 |
C-04 |
P-02 |
P-01 |
|
|
| 05 M |
09 |
Assembly; solution accuracy; approximation error; boundary flux |
3.4-5 |
C-05 |
|
|
|
|
| 06 T |
10 |
The recipe; syntactical GWSh; 1D SS conduction |
none |
C-06 |
|
|
|
|
| 07 R |
12 |
Matlab demo; linear basis elements; 1D SS conduction |
4.1-3 |
C-07 |
|
|
L-01 |
L-00 |
| 08 F |
13 |
Higher order elements; matrix integrals |
4.3-4 |
C-08 |
P-03 |
P-02 |
|
|
| 09 M |
16 |
Formal accuracy and convergence |
4.6 |
C-09 |
|
|
|
|
| 10 T |
17 |
Recipe - 1D SS conduction with boundary convection |
4.5 |
C-10 |
|
|
|
|
| 11 R |
19 |
Recipe - 1D SS conduction with boundary convection |
4.5 |
C-11 |
P-04 |
P-03 |
L-02 |
L-01 |
| 12 F |
20 |
Optional day; Matlab and HTML questions |
|
|
|
|
|
|
| |
|
Break |
|
|
|
|
|
|
| 13 M |
Jan 06 |
Higher order analysis, sequential analysis; euler-bernoulli beam |
4.8 |
C-13 |
|
|
|
|
| 14 T |
07 |
Definitions as weak statements; euler-bernoulli beam |
4.8 |
C-14 |
|
|
L-03 |
L-02 |
| 15 R |
09 |
Recipe; timeshenko beam |
none |
C-15 |
|
|
|
|
| 16 F |
10 |
Recipe; timeshenko beam |
none |
C-16 |
P-05 |
P-04 |
|
|
| 17 M |
13 |
Review |
none |
C-17 |
|
|
|
|
| 18 T |
14 |
EXAM I |
|
|
|
|
|
|
| 19 R |
16 |
Non-linear scalar equations; iterative solutions |
none |
C-19 |
|
|
|
|
| 20 F |
17 |
Non-linear problem statements; 1D SS conduction with temperature dependent conductivity |
none |
C-20 |
P-06 |
P-05 |
|
|
| 21 M |
20 |
Non-linear problem statements; newton iterative solver |
none |
C-21 |
|
|
L-04 |
L-03 |
| 22 T |
21 |
Transient problem statement; time stepping; 1D conduction |
8.1-2 |
C-22 |
|
|
|
|
| 23 R |
23 |
Theta-taylor series, Newton |
8.2 |
C-23 |
|
|
|
|
| 24 F |
24 |
Formal accuracy and convergence |
none |
C-27 |
P-07 |
P-06 |
L-05 |
L-04 |
| 25 M |
27 |
1D convection diffusion |
8.2 |
C-25 |
|
|
|
|
| 27 T |
28 |
1D convection diffusion |
8.2 |
C-26 |
|
|
|
|
| 27 R |
30 |
1D peclet problem |
8.4 |
C-29 |
|
|
|
|
| 28 F |
31 |
1D peclet problem |
8.4 |
C-28 |
P-08 |
P-07 |
L-06 |
L-05 |
| 29 M |
Feb 03 |
Burgers' equation |
8.4 |
C-29 |
|
|
|
|
| 30 T |
04 |
Burgers' equation |
none |
C-30 |
|
|
L-07 |
L-06 |
| 31 R |
06 |
Open channel flow |
none |
C-31 |
|
|
|
|
| 32 F |
07 |
Open channel flow |
none |
C-32 |
P-09 |
P-08 |
|
|
| 33 M |
10 |
Optional review day |
none |
C-33 |
|
|
|
|
| 34 T |
11 |
EXAM II |
|
|
|
|
|
|
| 35 R |
13 |
Triangular basis functions; 2-d problem statements |
|
C-35 |
|
|
|
|
| 36 F |
14 |
Triangle basis derivatives; flux boundaries |
|
C-36 |
P-10 |
P-09 |
|
|
| 37 M |
17 |
2-d diffusion example |
|
C-37 |
|
|
|
|
| 38 T |
18 |
ANSYS example |
|
C-38 |
|
|
|
|
| 39 R |
20 |
Evaluations and Review |
|
|
|
P-10 |
|
L-07 |
| 40 F |
21 |
No class |
|
|
|
|
|
|
| TOP |