Composite Sequences

In the February 2011 Mathematical Monthly Lenny Jones [1] considered the following question:
For a given digit d determine the smallest value k relatively prime to d so that when the digit d is repeatedly appended to the end of k the sequence kd, kdd, kddd, ... contains only composite numbers.
Jones proved that for d=1 the smallest k is 37. and noted that for d=3, k <= 4070, d=7, k <= 606474, and d=9, k <= 1879711.
Grantham, Jarnicki, Rickert and Wagon (GJRW, to appear) determined that for d=3, k = 4070 or 817, d=7, k = 891, d=9, k = 10175 or 8578 or 7018 or 4420 and conjectured that k3 = 4070, k9 = 10175.
In the same paper GJRW studied the question in other bases and determined answers for several cases and conjectures for most of the bases less than ten.
For each base b and trailing digit d relatively prime to the base this table lists the smallest known seed k so that appending the digit d any positive integer number of times to the base b representation of k always produces a composite number. The first column is the base b, the second column is the digit appended d, the third column is the base ten representation of the smallest known seed k, the fourth column is the base b representation of the smallest known seed, the fifth column is the number of values relatively prime to d that are less than k for which no prime is yet known for the sequence.
Base Digit seed base 10 seed base b Candidates
2 1 509202 1111100010100010010(1) 58 H. Riesel
3 1 6059 22022102(1) 15
2 63064644937 20000210002020220021021(2) CRUS
4 1 5 11(1) Minimum
3 8 20(3) Minimum
5 1 3 3(1) Minimum
2 191115 22103430(2) 258
3 585655 122220110(3) 2274
4 346801 42044201(4) 126
6 1 26789 324005(1) 29
5 84686 1452022(5) 2
7 1 76 136(1) Minimum*
2 15979 64405(2) 17
3 5629 22261(3) 19
4 20277 113055(4) 16
5 43 2211(5) Minimum
6 408034255081 41323316641135(6) CRUS
8 1 21 25(1) Minimum
3 1079770 4074732(3) 721
5 7476 16464(5) 29
7 13 15(7) Minimum
9 1 1 1(1) Minimum
2 4615 6287(2) 14
4 6059 8272(4) 12
5 78 86(5) Minimum*
7 2 2(7) Minimum
8 3 3(8) Minimum
10 1 37 37(1) Minimum L. Jones
3 4070 4070(3) 1 L. Jones, S. Wagon
7 891 891(7) Minimum* S. Wagon
9 10175 10175(9) 3 CRUS
* In these cases some of the primes found for smaller seeds are probable primes that have not been certified.
H. Riesel, Några stora primtal (Swedish: Some large primes), Elementa 39 (1956), 258-260.
L. Jones, When does appending the same digit repeatedly on the right of a positive integer generate a sequence of composite numbers?, Amer. Math. Monthly 118 (2011), 153-160.

Base 3

Digit 1

The prime factors of 6059 follow a pattern of period 12 using the cover
Residue 1 2 2 4 0
Modulus 2 3 4 6 12
Prime 2 13 5 7 73
The primes dividing 12A+r are
0 1 2 3 4 5 6 7 8 9 10 11
73 2 5 2 7 2 5 2 13 2 5 2
In list form {73,2,5,2,7,2,5,2,13,2,5,2}.
Candidates checked to 19200 digits.
(806,2419), (915,2746), 2877, (968,2905), 3059, 3393, 3689, 3738, 3755, 3813, 3969, 4029, (156, 469, 1408, 4225), 4356, 4388, (498, 1495, 4486), 4589, (1565,4696), 4905, 5325, (1794,5383), 5625, 5798, 5876, 6059.
Values with first prime occurring with more than 5000 digits.
k exponent k exponent k exponent
2055 12978, 2718 9567, 3059 28580
3158 15331 3368 17455 3515 5898
3755 26022 3788 5031 4225 24758
4376 16533 4486 20845 4589 21404
4655 11134 4819 8968 5005 12082
5625 24314 5759 11140
The remaining 17 values, and how far they've been checked. There are 15 candidates remaining through 50000 digits.
valueprime at composite tovalueprime at composite to
(806,2419) 50000 402947256
(915,2746)50000 435650000
(968,2905)50000 438850000
(1565,4696)50000 490550000
287750000 532550000
339350000 538350000
373850000 579850000
381350000 587636665
396950000

Digit 2
56532669941364262542767 has period 120 using the cover
03 42 1 2 5 13 17 1316 10
34 56 81012 15 20 2430 30
13511741617345611181648131271
The primes dividing 120A + r are
r0 1 2 3 4 5 6 7 8 9
prime13 41 7 13 11 73 13 5 7 13
r10 11 12 13 14 15 16 17 18 19
prime271 5 13 4561 11 13 31 41 13 5
r20 21 22 23 24 25 26 27 28 29
prime7 13 61 5 13 41 7 13 4561 11
r30 31 32 33 34 35 36 37 38 39
prime13 5 7 13 11 5 13 1181 7 13
r40 41 42 43 44 45 46 47 48 49
prime271 41 13 5 11 13 31 5 13 11
r50 51 52 53 54 55 56 57 58 59
prime7 13 61 73 13 5 7 13 4561 5
r60 61 62 63 64 65 66 67 68 69
prime13 6481 7 13 11 41 13 5 7 13
r70 71 72 73 74 75 76 77 78 79
prime271 5 13 41 11 13 31 73 13 5
r80 81 82 83 84 85 86 87 88 89
prime7 13 61 5 13 6481 7 13 4561 11
r90 91 92 93 94 95 96 97 98 99
prime13 5 7 13 11 5 13 41 7 13
r100 101 102 103 104 105 106 107 108 109
prime271 73 13 5 11 13 31 5 13 11
r110 111 112 113 114 115 116 117 118 119
prime7 13 61 41 11 5 7 13 4561 5
As a list this is
{13,41,7,13,11,73,13,5,7,13,271,5,13,4561,11,13,31,41,13,5,7,13,61,5,13,41,7,13,4561,11, 13,5,7,13,11,5,13,1181,7,13,271,41,13,5,11,13,31,5,13,117,13,61,73,13,5,7,13,4561,5, 13,6481,7,13,11,41,13,5,7,13,271,5,13,41,11,13,31,73,13,5,7,13,61,5,13,6481,7,13,4561,11, 13,5,7,13,11,5,13,41,7,13,271,73,13,5,11,13,31,5,13,11,7,13,61,41,11,5,7,13,4561,5}
Up to 4*105 only eight values require at least 3000 digits
Value First Prime Composite to at leastFilter
954155933
1282714259
20188590003m+2,12m+6
2862475932
30109530003m,12m+10
34337130003m+1,24m+15
36778530003m+1,12m+6
38481530003m,36m+10

Base 4

Digit 1
sn4,1(5) = ((3*5+1)*4k-1)/3 = (4k+2-1)/3= (2k+2-1)(2k+2-1)/3.
Seed First Prime Seed First Prime Seed First Prime Seed First Prime
11 22 31 41
Note that since sn4,1(1) = (2k+1-1)(2k+1-1)/3,   sn4,1(1) is prime only for n=1.
Digit 3
sn4,3(3) = ((3+1)*4k-1 = (4k+1-1)= (2k+1-1)(2k+1-1).
Seed First Prime Seed First Prime
11 21

Base 5

Digit 1
The prime factors of sn5,1(3) have period 2
Residue 1 0
Modulus 2 2
Prime 2 3
The prime divisor list is {3,2}.
Seed First Prime Seed First Prime
12 21
Digit 2
sn5,2(191115) is covered using a period 12 cover
Residue 0 0 3 1 5
Modulus 2 3 4 6 12
Prime 3 31 13 7 601
The primes dividing 12A+r are
0 1 2 3 4 5 6 7 8 9 10 11
3 7 3 31 3 601 3 13 3 31 3 13
The list form of the prime divisors is {3,7,3,31,3,601,3,13,3,31,3,13}.
There are 258 candidates listed at Base5Digit2.html checked to 15000 digits.
Digit 3
sn5,3(585655) is covered using a period 12 cover
Residue 1 2 2 0 4
Modulus 2 3 4 6 12
Prime 2 31 13 7 601
The primes dividing 12A+r are
0 1 2 3 4 5 6 7 8 9 10 11
7 2 31 2 601 2 7 2 31 2 13 2
The list of primes is {7,2,31,2,601,2,7,2,31,2,13,2}.
There are 2274 candidates listed at Base5Digit3.html checked to 15000 digits.
Digit 4
sn5,4(346801) is covered using a period 12 cover
Residue 1 2 0 0 4
Modulus 2 3 4 6 12
Prime 3 31 13 7 601
The primes dividing 12A+r are
0 1 2 3 4 5 6 7 8 9 10 11
7 3 31 3 13 3 7 3 31 3 601 3
The list of primes is {7,3,31,3,13,3,7,3,31,3,601,3}.
There are 127 candidates listed at Base5Digit4.html checked to 15000 digits.

Base 6

Digit 1
sn6,1(26789) is covered using a period 12 cover
Residue 0 0 3 1 5
Modulus 2 3 4 6 12
Prime 7 43 37 31 13
The primes dividing 12A+r are
0 1 2 3 4 5 6 7 8 9 10 11
7 37 7 43 7 13 7 37 7 43 7 37
The list of primes is {7,31,7,43,7,13,7,37,7,43,7,37}.
There are 29 candidate seed values less than 26789 checked to 15000 digits.
valueprime at composite tovalueprime at composite tovalueprime at composite to
503008 84432700 1859213000
983041 88773246 195032094
52513000 92194015 199793780
5756476 92883826 205183150
8487056 995413000 2061613000
124713000 1013713000 2077013000
166610461 1078813000 2114710851
17574091 1090713000 216724279
189813000 1101213000 2186813000
22123225 111655103 220585566
32204009 1158513000 221635130
460611921 122855009 221692467
50332769 136372694 2223213000
529211657 140433206 2294013000
55802578 141412548 2301613000
57692504 1535213000 234152109
58533020 1535910630 2375813000
60322890 157082939 237867031
63212147 1596013000 2468313000
64903826 1668213000 2527713000
68045807 169829k-13k 2549413000
69666820 1724313000 2578813000
740613000 176755337 262303002
75758976 1775913000 263632190
812713000 179974745 2649513000
Digit 5
sn6,5(84686) is covered using a period 12 cover
Residue 0 1 1 3 11
Modulus 2 4 6 12 12
Prime 7 37 31 13 97
The primes dividing 12A+r are
0 1 2 3 4 5 6 7 8 9 10 11
7 37 7 13 7 37 7 31 7 37 7 97
The list of primes is {7,37,7,13,7,37,7,31,7,37,7,97}.
There are 95 values below 84686 checked to 2000 digits.
1596, 1834, 3589, 4396, 6872, 6986, 8258, 8743, 9366, 9576, 9581, 10694, 11009, 11142, 11389, 14502, 15064, 16828, 17106, 17458, 18284, 19388, 19467, 19906, 20683, 20713, 21539, 21798, 23791, 25051, 26381, 26899, 27447, 28098, 28539, 29846, 30086, 32667, 33626, 35007, 35964, 36771, 37294, 40656, 41237, 41921, 43629, 43993, 44324, 47388, 48384, 48949, 49462, 49553, 49791, 51016, 52463, 53093, 54957, 56201, 57022, 57461, 57491, 57561, 58576, 58756, 59094, 59568, 60648, 61894, 62377, 63028, 63798, 64169, 65002, 66038, 66059, 66302, 66857, 68339, 68857, 70166, 73036, 74186, 76188, 76699, 76706, 77742, 78636, 78958, 79814, 80584, 82516, 83818, 84242. 15 of these are redundant; (1596, 9581, 57491) ,(1834, 11009, 66059), (3589, 21539), (4396, 26381), (6872, 41237), (6986, 41921 ), (8258, 49553), (8743, 52463), (9366, 56201), (9576, 57461), (10694, 64169), (11142, 66857 ), (11389, 68339)
leaving 80 candidates for smallest seed.
1596, 1834, 3589, 4396, 6872, 6986, 8258, 8743, 9366, 9576, 10694, 11142, 11389, 14502, 15064, 16828, 17106, 17458, 18284, 19388, 19467, 19906, 20683, 20713, 21798, 23791, 25051, 26899, 27447, 28098, 28539, 29846, 30086, 32667, 33626, 35007, 35964, 36771, 37294, 40656, 43629, 43993, 44324, 47388, 48384, 48949, 49462, 49791, 51016, 53093, 54957, 57022, 57561, 58576, 58756, 59094, 59568, 60648, 61894, 62377, 63028, 63798, 65002, 66038, 66302, 68857, 70166, 73036, 74186, 76188, 76699, 76706, 77742, 78636, 78958, 79814, 80584, 82516, 83818, 84242.
There are 34 candidate seed values less that 84686 remaining after checking to 12000 digits.
Most of these have been eliminated. Some of the prime are available at Gary Barnes's Riesel Conjectures page.
valueprime at composite tovalueprime at composite tovalueprime at composite to
15961210000 268994542 58756CRUS
18345533 274472135 59094171929
35899186 280982355 595685996
43964175 285392545 606483857
68722268 29846141526 618946215
69865119 300865437 623772559
8258CRUS 326672122 630287317
87435417 33626CRUS 637985821
93667845 35007CRUS 650028507
9576121099 35964CRUS 66038CRUS
10694CRUS 367711210000 663023204
111423744 37294CRUS 688577982
11389CRUS 40656CRUS 701664272
145024680 436295720 730367676
150642117 43993569498 74186CRUS
16828CRUS 443242451 761887865
171066528 473884246 766998395
17458CRUS 483846653 76706CRUS
18284CRUS 48949143236 77742560745
19388CRUS 49462CRUS 786364160
194673529 49791CRUS 78958458114
19906CRUS 51016528803 79814113777
20683CRUS 530932844 805842201
207133979 54957CRUS 825162517
21798CRUS 57022483561 838183197
237912054 575612439 842423540
250512842 585767185
Conjectures 'R Us has checked most of these. The prime values for greater than 12000 digits are from CRUS.

Base 7

Digit 1
sn7,1(76) uses a period 12 cover to show that all terms are composite.
Residue 0 2 0 3 1
Period 2 3 3 4 12
Prime 2 3 19 5 13
Primes dividing s12A+r7,1(76) are
    r 0 1 2 3 4 5 6 7 8 9 10 11
prime 2 13 2 19 2 3 2 5 2 19 2 3
The list of primes is {2,13,2,19,2,3,2,5,2,19,2,3}.
The smaller seed values produce primes
Seed First Prime Seed First Prime Seed First Prime Seed First Prime Seed First Prime
1 23 34 41 518
61 74 83 92 101
112 12127 13424 145 151
161 1720 183 19256 204
214 223 23468 245 2510
269 2714 281 292 301
314 3227 334 341 352
3617 374 385 3940 401
412 4231 434 443 452
4645 472 481 496 503
51260 525907 538 541 5546
56177 572 58177 5918 601
6115118 623 6316 641 65938
661 674 6815 692 701
718 727 734 743 75398
Digit 2
sn7,2(15979) uses a period 12 cover to show that all terms are composite.
Residue 1 0 1 2 11
Period 3 3 4 6 12
Prime 3 19 5 43 13
Primes dividing s30A+r7,2(15979) are
    r 0 1 2 3 4 5 6 7 8 9 10 11
prime 19 3 43 19 3 5 19 3 43 19 3 13
The list of primes is {19,3,43,19,3,5,19,3,43,19,3,13}.

31 candidates through 3000 digits.
(2047, 14331), (2261, 15829), 3601, 3667, 4011, 4101, 4315, 4785, 5149, 5507, 5849, 6479, 6609, 7505, 8305, 8911, 8937, 9069, 9331, 9839, 10279, 11837, 12347, 12565, 12979, 14331, 14759, 14945, 15181, 15711,.
Removing redundancies leaves 29 candidates less than 28521 that are checked to 3000 digits. 2047, 2261, 3601, 3667, 4011, 4101, 4315, 4785, 5149, 5507, 5849, 6479, 6609, 7505, 8305, 8911, 8937, 9069, 9331, 9839, 10279, 11837, 12347, 12565, 12979, 14759, 14945, 15181, 15711.
There are 17 candidate seed values less that 28521 remaining after checking to 15000 digits.
13096
valueprime at composite tovalueprime at composite tovalueprime at composite to
204715000 58496084 102793074
2261 647915000 1183714782
360115000 660915000 1234715000
366715000 750515000 125653159
401115000 830515000 129794836
410115000 89113839 1475915000
43155502 89373242 1494515000
478515000 90699263 1518115000
514915000 933115000 157117429
550712597 983915000
Digit 3
sn7,3(5629) uses a period 12 cover to show that all terms are composite.
Residue 0 1 2 2 0
Period 2 3 4 6 12
Prime 2 19 5 43 13
Primes dividing s12A+r7,3(5629) are
    r 0 1 2 3 4 5 6 7 8 9 10 11
prime 13 2 5 2 19 2 5 2 43 2 5 2
The list of primes is {13,2,5,2,19,2,5,2,43,2,5,2}.

54 candidates less than 5629 checked through 2000 digits.
(98,689,4826) (214, 1501) (358,2509), (515,3608), (556,3895), (589,4126) (734,5141), 896, 905, 989, 1126, 1246, 1336, 1516, 1639, 1796, 1945,2168, 2323, 2465, 2468, 2695, 2848, 2885, 3028, 3056, 3245, 3416, 3518, 3628, 3875, 4145, 4171, 4256, 4258, 4565, 4579, 4586, 4736, 4828, 4856, 5095, 5116, 5366, 5510, 5546, 5629
There are 46 candidates for smallest seed below 5629 checked through 2000 digits.
98, 214, 358, 515, 556, 589, 734, 896, 905, 989, 1126, 1246, 1336, 1516, 1639, 1796, 1945, 2168, 2323, 2465, 2468, 2695, 2848, 2885, 3028, 3056, 3245, 3416, 3518, 3628, 3875, 4145, 4171, 4256, 4258, 4565, 4579, 4586, 4736, 4828, 4856, 5095, 5116, 5366, 5510, 5546.
raising the check to 15000 digits leaves 19 smaller seed candidates.
valueprime at composite tovalueprime at composite tovalueprime at composite to
98 15000 194515000 414514802
214 3815 216815000 41718992
358 15000 23232964 425615000
515 15000 246515000 42583885
556 4895 246815000 456515000
589 15000 26954882 457915000
734 4669 28485589 458615000
896 5839 288515000 47362931
905 15000 302815000 482815000
989 15000 30562139 48563503
1126 15000 324515000 509515000
1246 2567 34163955 511615000
1336 15000 351815000 53664583
1516 2819 362815000 55105911
1639 2024 38752894 554615000
1796 3307
Digit 4
sn7,4(20277) uses a period 12 cover to show that all terms are composite.
Residue 0 2 2 1 5
Period 3 3 4 6 12
Prime 3 19 5 43 13
Primes dividing s12A+r7,4(20277) are
    r 0 1 2 3 4 5 6 7 8 9 10 11
prime 3 43 19 3 13 19 3 43 19 3 5 19
The list of primes is {3,43,19,3,31,19,3,43,19,3,5,19}.

39 candidates checked through 2000 digits.
(507,3553),(2217,15523),(2303,16125), 3059,3405,3775,4203,4469,4515,4915,6517,6739,8687,10397, 10697,10813,12087,12293,12635,13095,13361,14583,14615,14801,14953,15599, 16211,16511,17313,18107,18139,18145,18863,19675,19703,20229,20277
There are 36 candidates less than 20277 checked through 2000 digits.
507,2217,2303,3059,3405,3775,4203,4469,4515,4915, 6517,6739,8687,10397,10697,10813,12087,12293,12635,13095, 13361,14583,14615,14801,14953,15599,16211,16511,17313,18107, 18139,18145,18863,19675,19703,20229.
Checking through 15000 digits leave 16 smaller seed candidates.
valueprime at composite tovalueprime at composite tovalueprime at composite to
50715000 868715000 1495315000
22173344 1039715000 155994526
23032535 1069715000 162113891
30593077 1081313434 1651115000
340515000 120876805 173134210
37754449 1229315000 1810715000
420315000 1263515000 1813910842
446915000 130952011 181459631
45152245 133612841 188632247
49157446 145832098 1967515000
651715000 146152949 1970315000
673915000 148013461 202292426
Digit 5
sn7,5(43) uses a period 6 cover to show that all terms are composite.
Residue 0 0 1 5
Period 2 3 3 6
Prime 2 3 19 43
Primes dividing s12A+r7,5(43) are
    r 0 1 2 3 4 5
prime 2 19 2 3 2 43
The list of primes is {2,19,2,3,2,43}.

Seed First Prime Seed First Prime Seed First Prime Seed First Prime
12 21 34 43
61 72 81 94
114 121 132 141
165 1710 181 192
212 225 234 241
263 2714 289 296
312 321 332 345
361 376 381 392
4110 427 43never 441

Digit 6
2384410917857141 uses a period of cover 60 sn7,6(2384410917857141) uses a period 60 cover to show that all terms are composite.
Residue 2 3 0 4 2 6 9 1 9 18 48
Period 3 4 5 6 10 10 12 12 15 20 60
Prime 19 5 2801 43 11>/TD> 191 13 181 31 281 61
The primes dividing 60A + r are
r0 1 2 3 4 5 6 7 8 9
prime2801 181 19 5 43 19 191 5 19 13
r10 11 12 13 14 15 16 17 18 19
prime2801 19 11 181 19 5 43 19 281 5
r20 21 22 23 24 25 26 27 28 29
prime19 13 11 19 31 2801 19 5 43 19
r30 31 32 33 34 35 36 37 38 39
prime2801 5 19 13 43 19 191 181 19 5
r40 41 42 43 44 45 46 47 48 49
prime2801 19 11 5 19 2801 43 19 61 181
r50 51 52 53 54 55 56 57 58 59
prime19 5 43 19 31 5 19 13 43 19
There are 4 values up to 105 checked through 3000 digits.
48251, 48583, 78647, 92017 Need to check 12m+(0;2;5;6;9), 12m+(5;8;11), 12m+(3;4;10),12m+(4; 7;8; 10;11), resp.

Base 8

Digit 1
sn8,1(21) uses a period 12 cover to show that all terms are composite.
Residue 0 2 2
Period 2 4 4
Prime 3 5 13
Primes dividing s12A+r8,1(21) are
    r 0 1 2 3
prime 3 13 3 5
The list of primes is {3,13,3,5}.

Seed First Prime Seed First Prime Seed First Prime Seed First Prime
12 21 33 412
51 6217282
91106111121
13314141153162
171181391920202
Digit 3
sn8,3(1079770) uses a period 120 cover to show that all terms are composite.
Residue 1 0 3 0 5 1 7 2
Period 3 4 4 6 8 8 10 12
Prime 73 5 13 19 17 241 11 37
Primes dividing s120A+r8,3(1079770) are
r0 1 2 3 4 5 6 7 8 9
prime13 41 7 13 11 73 13 5 7 13
r10 11 12 13 14 15 16 17 18 19
prime271 5 13 4561 11 13 31 41 13 5
r20 21 22 23 24 25 26 27 28 29
prime7 13 61 5 13 41 7 13 4561 11
r30 31 32 33 34 35 36 37 38 39
prime13 5 7 13 11 5 13 1181 7 13
r40 41 42 43 44 45 46 47 48 49
prime271 41 13 5 11 13 31 5 13 11
r50 51 52 53 54 55 56 57 58 59
prime7 13 61 73 13 5 7 13 4561 5
r60 61 62 63 64 65 66 67 68 69
prime13 6481 7 13 11 41 13 5 7 13
r70 71 72 73 74 75 76 77 78 79
prime271 5 13 41 11 13 31 73 13 5
r80 81 82 83 84 85 86 87 88 89
prime7 13 61 5 13 6481 7 13 4561 11
r90 91 92 93 94 95 96 97 98 99
prime13 5 7 13 11 5 13 41 7 13
r100 101 102 103 104 105 106 107 108 109
prime271 73 13 5 11 13 31 5 13 11
r110 111 112 113 114 115 116 117 118 119
prime7 13 61 41 11 5 7 13 4561 5
The list of primes is {3,43,19,3,31,19,3,43,19,3,5,19}.

There are 721 candidates less than 1079770 listed at Base8Digit3.html checked to 15000 digits.
Digit 5
sn8,5(7476) uses a period 8 cover to show that all terms are composite.
Residue 0 1 3 7
Period 2 4 8 8
Prime 3 13 17 241
Primes dividing s8A+r8,5(7476) are
r   0 1 2 3 4 5 6 7
prime 3 13 3 17 3 13 3 241
The list of primes is {3,13,3,17,3,13,3,241}.

There are 29 candidates for minimum seed less than 7476 checked to 15000 digits.
valueprime atcomposite to valueprime atcomposite to valueprime atcomposite to
1241 15000 3458 15000 5703 7675
1673 15000 3503 15000 6267 15000
1791 15000 3762 8529 6312 15000
1898 15000 3801 15000 6611 15000
2046 15000 38437659 6851 15000
2171 15000 (486,3893) 15000 6896 13840
2274 15000 4121 15000 7014 15000
2336 15000 4283 15000 7232 15000
2489 15000 (539,4317) 15000 7233 15000
2553 8449 4464 15000 7272 7665
2723 11488 5058 7295 7398 15000
2982 15000 5292 15000
2999 7828 5531 15000
3116 10796 5627 15000
Digit 7
sn8,7(13) uses a period 4 cover to show that all terms are composite.
Residue 0 1 3
Period 2 4 4
Prime 3 5 13
Primes dividing s4A+r8,7(13) are
    r 0 1 2 3
prime 3 5 3 13
The list of primes is {3,5,3,13}.

Seed First Prime Seed First Prime Seed First Prime Seed First Prime
12 21 31 44
51 63 81
911018113121

Base 9

Digit 1
111...1 = (9k-1)/8 = (3k-1)(3k+1)/(2*4)
Digit 2
sn9,2(4615) uses a period 6 cover to show that all terms are composite.
Residue 0 2 0 1
Period 2 3 3 6
Prime 5 7 13 73
Primes dividing s8A+r9,2(4615) are
r   0 1 2 3 4 5
prime 5 73 5 13 5 7
The list of primes is {5,73,5,13,5,7}.

The 14 candidates less than 4615 have been checked to 15000 digits.
valueprime atcomposite to valueprime atcomposite to
30715000
847 15000 1945 15000
975 15000 2555 6185
1125 15000 2995 15000
1157 15000 3157 15000
1197 7024 3437 9434
1255 15000 3985 15000
1637 11336 4157 5262
1679 15000 4167 15000
1787 15000 4195 15000
Digit 4
sn9,4(6059) uses a period 6 cover to show that all terms are composite.
Residue 1 2 1 0
Period 2 3 3 6
Prime 5 7 13 73
Primes dividing s8A+r9,4(6059) are
r   0 1 2 3 4 5
prime 73 5 7 5 13 5
The list of primes is {73,5,7,5,13,5}.

The 12 remaining candidate seeds less than 6059 checked to 18000 digits.
valueprime atcomposite to valueprime atcomposite to
915 18000 3755 13011
149510423 3813 18000
1565 18000 3969 18000
1635 2479 3975 2041
2419 18000 4029 18000
2877 18000 422512379
2905 18000 4905 18000
3059 14290 5325 18000
3393 18000 5383 18000
3689 8428 5535 2045
562512157
Most of these are covered in the Base 3 digit 1 case. So the searches can be combined.
Digit 5
sn9,5(78) uses a period 6 cover to show that all terms are composite.
Residue 0 1 0 5
Period 2 3 3 6
Prime 2 7 13 73
Primes dividing s8A+r9,5(78) are
r   0 1 2 3 4 5
prime 2 7 2 13 2 73
The list of primes is {2,7,2,13,2,73}.

Seed First Prime Seed First Prime Seed First Prime Seed First Prime
1 2 2 1 3 2 4 1
6 1 7 2 8 3 9 4
11 2 12 1 13 2 14 1
16 1 17 2 18 1 19 442
21 14 22 3 23 2 24 5
26 1 27 2 28 1 29 2
31 4 32 1 33 4 34 1
36 3 37 264 38 1 39 2
41 2 42 1 43 2 44 1
46 1 47 10 48 3 49 2
51 12 52 5 53 6 54 1
56 1 57 282 58 3 59 4
61 4 62 1 63 2 64 3
66 1 67 2 68 1 69 2
71 2 72 1 73 10 74 3
76 21 77 2
Digit 7
sn9,7(2) uses a period 2 cover to show that all terms are composite.
Residue 1 0
Period 2 2
Prime 2 5
Primes dividing s2A+r9,7(2) are
r   0 1
prime 5 2
The list of primes is {5,2}.

1779= 15110 is prime.
Digit 8
sn9,8(3)= (4*9k-1)= (2*3k-1)*(2*3k+1).
189 = 1710 is prime.

Base 10

Digit 1
Lenny Jones proved that 37 is the minimal seed and produced the table showing the first appearance of a prime for each smaller seed.
sn10,1(37) uses a period 6 cover to show that all terms are composite.
Residue 0 1 0 5
Period 2 3 3 6
Prime 2 7 13 73
Primes dividing s8A+r10,1(37) are
r   0 1 2 3 4 5
prime 7 3 37 13 3 37
The list of primes is {7,3,37,13,3,37}.

Digit 3
The only candidate seed less that 4070 is 817. This has been checked to 554789 digits.
Candidates requiring at least 2500 digits to produce a prime are
seeddigits
41037398
817
10373292
116612689
12794752
29596763
367416097
Digit 7
The minimal seed is 891.
Digit 9
Two candidates less than 10175 remain.
valueprime atcomposite to
449 11958
134329711
180245882
193451836
335513323
40153647
4420 630000
44774817
65875846
6664 60248
7018 630000
8578 373260

H. Riesel, Några stora primtal (Swedish: Some large primes), Elementa 39 (1956), 258-260.
L. Jones, When does appending the same digit repeatedly on the right of a positive integer generate a sequence of composite numbers?, Amer. Math. Monthly 118 (2011), 153-160.
The Reisel problem
The repunit case for other bases OEIS A084740
Karsten Bonath's Riesel Prime database No Prime left behind summary A condensed table for the extended Riesel conjectures at No Prime Left Behind