Methods of Proof for Boolean Logic

Conjunction Elimination

Conjunction Elimination (\(\text{Elim} \):

```
P_1 \wedge \ldots \wedge P_i \wedge \ldots \wedge P_n

\vdots

P_i
```

Conjunction Introduction

Conjunction Introduction (\land Intro):

```
P_1
\downarrow \downarrow
P_n
\vdots
P_1 \wedge \ldots \wedge P_n
```

In this rule, we have used the notation:

to indicate that each of P_1 through P_n must appear in the proof before you can assert their conjunction. The order in which they appear does not matter,

Disjunction Introduction

Disjunction Introduction (\vee Intro):

```
P_i
\vdots
P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n
```

Disjunction Elimination

Disjunction Elimination (\vee Elim):

Disjunction Elimination

Proof by cases

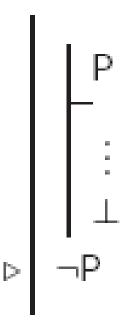
Negation Elimination

Negation Elimination (\neg Elim):

```
¬¬P
:
▷ P
```

Negation Introduction

Negation Introduction (\neg Intro):



Negation Introduction

Proof by contradiction

⊥ Introduction

 \perp Introduction (\perp Intro):

P ∵ ¬P ∴ ⊥

⊥ Elimination

 \perp Elimination (\perp Elim):

| ⊥ |: | P

⊥ Elimination

Proof from inconsistent premises