Tauts

- Tautology
- Tautological equivalence
- Tautological consequence

Explanation based on Truth Tables

Tautology:

Only has T's under main connective

Tautological equivalence:

Two sentences have the same truth values in a truth table

Tautological consequence:

Q is a tautological consequence of P, if Q has a T wherever P has one.

Logs

- Logical truth
- Logical equivalence
- Logical consequence

Logical equivalence

- If tautological equivalent then logically equivalent.
- Reverse not necessarily true, consider:

$$a = b \wedge Cube(a)$$

$$a = b \wedge Cube(b)$$

a=b	Cube(a)	Cube(b)	$a = b \land Cube(a)$	$a = b \land Cube(b)$
Т	Т	Т	T	\mathbf{T}
T	T	F	\mathbf{T}	\mathbf{F}
T	F	Т	\mathbf{F}	${f T}$
T	F	F	\mathbf{F}	\mathbf{F}

Proof

- Suppose: a = b ^ Cube(a) is true.
- Then both a = b and Cube(a) are true.
- By indiscernibility of identicals, we know that Cube(b) is true.
- The truth of a = b ^ Cube(a) logically implies the truth of a = b ^ Cube(b)
- The reverse holds as well.

Logical consequence

- Every tautological consequence is also a logical consequence.
- Reverse not necessarily true, consider:

a = c which is a logical consequence of $(a = b \land b = c)$

- There is a row in the TT in which (a = b ^ b = c) is T
 but in which a = c is F
- This row does not respect the meanings of the atomic sentences

Logical truth

- Every tautology is a logical truth.
- Reverse is not necessarily true, consider:

```
¬(Larger(a,b) ^ Larger(b,a))
```

- Sentence cannot possibly be false.
- However, there is an F in the truth table for it.

Two more defintions

- Logically possible. Anything that can be true on logical grounds.
 - Example: Going faster than the speed of light.
- Logically necessary. If it is true in every logically possible circumstance.
 - Examples: Any tautology. Any sentence that can be proven with no premises at all.
- Logically necessary and Logical truth are equivalent.

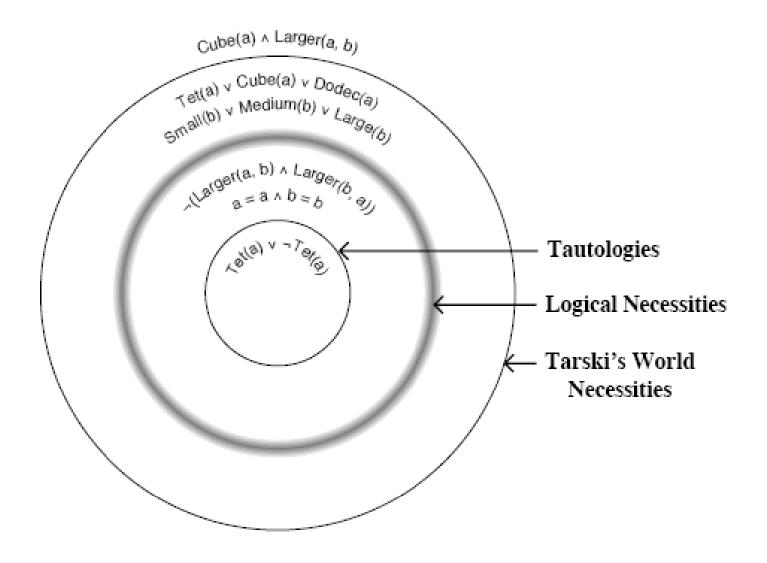


Figure 4.1: The relation between tautologies, logical truths, and Twnecessities.