p1:
$$a_1 \lor a_2 \lor \cdots \lor a_n$$

p2: $b_1 \lor b_2 \lor \cdots \lor b_m$

having two literals a_i and b_j , where $1 < i \le n$ and $1 \le j \le m$, such that $\neg a_i = b_j$. Binary resolution produces the clause:

$$a_1 \vee \cdots \vee a_{i-1} \vee a_{i+1} \vee \cdots \vee a_n \vee b_1 \vee \cdots \vee b_{j-1} \vee \dot{b_{j+1}} \vee \cdots \vee b_m.$$

The notation above indicates that the resolvent is made up of the disjunction of all the literals of the two parent clauses except for the literals a_i and b_j .

A simple argument can give the intuition behind the resolution principle. Suppose

$$a \lor \neg b$$
 and $b \lor c$

are both true statements. Observe that one of b and \neg b must always be true and one always false (b $\lor \neg$ b is a tautology). Therefore, one of

 $a \lor c$