Completeness for FOL

Overview

- ✓ Adding Witnessing Constants
- ✓ The Henkin Theory
- ✓ The Elimination Theorem
- The Henkin Construction

- This lemma assures us that our construction of \mathfrak{M}_{b} works for the atomic sentences.
- That is, $\mathfrak{M}_{\mathfrak{h}}$ will make an atomic sentence true if and only if h assigns TRUE to that atomic sentence.
- Lemma 12. If $c \equiv c'$, $d \equiv d'$, and h(R(c, d)) = TRUE, then h(R(c', d')) = TRUE.

 Proof. By Exercise 19.8, the following is a tautological consequence of the Henkin theory H:

$$(R(c, d) \land c = c' \land d = d') \rightarrow R(c', d')$$

- Since h assigns everything in H TRUE
- And it assigns TRUE to each conjunct of $R(c, d) \wedge c = c' \wedge d = d'$,
- It must also assign TRUE to R(c', d').

- **Lemma 13.** For any sentence **S** of L_H , \mathfrak{M}_h |= S if and only if h(S) = TRUE.
- **Remarks.** We have explicitly defined the structure \mathfrak{M}_h to ensure the claim is true for atomic sentences.
- Further, truth assignments work the same way on truthfunctional connectives as the definition of truth in a firstorder structure.
- The only possible problems are the quantifiers.
- As we will see, they are taken care of by the quantifier axioms in H.
- Notice that the quantifier ∀ is not handled directly, but indirectly through the deMorgan sentences in H:
 - $\neg \forall x P(x) \longleftrightarrow \exists x \neg P(x)$

- The proof will be by induction.
- Due to the above, we cannot use the length or number of logical operations of a wff.
- As it would count count $\forall x P(x)$ as simpler than the sentence $\exists x \neg P(x)$,
- We define a different measure of complexity for wffs.
- We define the complexity of an atomic wff to be 0
- The complexity of $\neg P$ and $\exists xP$ to be one greater than the complexity of P.
- The complexity of P ∧ Q, P ∨ Q, and P → Q to be one greater than the maximum of that of P and Q
- The complexity of $\forall xP$ to be three greater than that of P.

Examples of wffs and their Complexities

wff	complexity
Small(x)	0
(x = a)	0
$\neg(x = a)$	1
$Small(x) \rightarrow \neg(x = a)$	2
$\neg(Small(x) \to \neg(x=a))$	3
$\exists x \neg (Small(x) \rightarrow \neg (x = a))$	4
$\forall x (Small(x) \rightarrow \neg(x = a))$	5

- **Proof**. By induction on the complexity of sentences.
- <u>Base case.</u> When the complexity is 0 the lemma is true by the way we defined the structure \mathfrak{M}_h .
- Assume that the lemma holds for all sentences of complexity \leq k and let **S** have complexity \leq k + 1.
- <u>Inductive case</u>. There are several cases to consider, depending on the main connective or quantifier of **S**.
- We prove one of the truth-functional cases, as these are all similar, and then both of the quantifier cases.

- Case 1. Suppose S is P V Q. If \mathfrak{M}_h |= S, then at least one of P or Q is true.
- Assume that P is true.
- Since the complexity of S is ≤ k+1, the complexity of P is ≤ k.
- By induction hypothesis, h(P) = TRUE.
- But then $h(P \lor Q) = TRUE$, as desired.
- The proof in the other direction is similar.

- Case 2. Suppose that S is $\exists xP(x)$.
- We need to show that $\mathfrak{M}_h \mid = \exists x P(x)$ if and only if h assigns the sentence TRUE.
- Assume first that the sentence is true in \mathfrak{M}_h .
- Since every object in the domain is denoted by some constant, there is a constant \mathbf{c} such that $\mathfrak{M}_h \mid = P(\mathbf{c})$.
- The complexity of this sentence is less than that of S.
- By our induction hypothesis h(P(c)) = TRUE.
- Recall that our theory H contains the sentence $P(c) \rightarrow \exists x P(x)$

- As such, h assigns this sentence TRUE.
- By the truth table for \rightarrow , h assigns true to $\exists xP(x)$, as desired.
- The reverse direction of this case is very similar.
- It uses the Henkin witnessing axiom for P(x).
- Assume that h assigns true to $\exists x P(x)$.
- We need to show that $\mathfrak{M}_h \mid = \exists x P(x)$.
- Recall that h assigns TRUE to the witnessing axiom $\exists x P(x) \rightarrow P(cP(x))$
- By the truth table for \rightarrow , h assigns TRUE to P($c_{P(x)}$).
- By induction, this sentence is true in \mathfrak{M}_h .
- But then $\exists x P(x)$ is true as well.

- Case 3. Let us assume that S is $\forall x P(x)$.
- We need to prove that this sentence is true in \mathfrak{M}_h if and only if h assigns the sentence TRUE.
- Assume first that **S** is true in \mathfrak{M}_h .
- In this case, $\exists x \neg P(x)$ is false in \mathfrak{M}_h .
- By induction, h assigns FALSE to this sentence.
- Recall that H contains the sentence $\neg \forall x P(x) \longleftrightarrow \exists x \neg P(x)$
- From this it follows that h assigns false to $\neg \forall x P(x)$ and hence true to $\forall x P(x)$, as desired.
- The proof in the other direction is entirely similar.

Function symbols

- If there are function symbols in the original language, we have to explain how to interpret them in our structure.
- Suppose, for example, that our language contains a one-place function symbol f.
- How should we define its interpretation f?
- In particular, if d is some constant symbol, what equivalence class should f([d]) be?
- What comes to our rescue here is the witnessing constant for the sentence $\exists x [f(d) = x]$

Function symbols

- We can define f([d]) to be the equivalence class $[c_{f(d)=x}]$ of the witnessing constant $c_{f(d)=x}$.
- $\exists x [f(d) = x] \rightarrow f(d) = c_{f(d)=x} \text{ is in } H$
- As such, it is not hard to check that all the details of the proof work out pretty much without change.
- This completes our filling in of the outline of the proof of the Completeness Theorem.

Review: Putting Everything Together

- Assume that T and S are all from the original language L and that S is a first-order consequence of T.
- We want to prove that T | S.
- By assumption, there can be no first-order structure in which all of $T \cup \{\neg S\}$ is true.
- By the Henkin Construction lemma, there can be no truth assignment h which assigns TRUE to all sentences in T U H U {¬S}.

Review: Putting Everything Together

- If there were, then the first-order structure \mathfrak{M}_h would make $T \cup \{\neg S\}$ true.
- Hence S is a tautological consequence of T U H.
- The Completeness Theorem for propositional logic tells us there is a formal proof p of S from T U H.
- The Elimination Theorem tells us that using the quantifier rules, we can transform p into a formal proof p of S from premises in T.
- Hence, T | S, as desired.