Truth and Consequence

Satisfaction Example

- We take a structure \mathfrak{M} with domain $D = \{a, b, c\}$.
- Suppose our language contains the binary predicate Likes
- Let the extension of this predicate be the following set of pairs:

Likes^{$$\mathfrak{M}$$} = {, , }

- That is, a likes itself and b, c likes a, and b likes no one.
- Consider the wff: $\exists y (Likes(x, y) \land \neg Likes(y, y))$
- Notice that x is a free variable.
- If the definition of satisfaction is doing its stuff, it should turn out that an assignment g satisfies this wff just in case g assigns a to the variable x.
- After all, a is the only individual who likes someone who does not like himself.

Satisfaction Example

- Note that g has to assign some value to x, since it has to be appropriate for the formula.
- Call this value e; e is one of a, b, or c.
- Next, we see from the clause (8) for \exists that g satisfies our wff just in case there is some object $d \in D$ such that g[y/d] satisfies the wff Likes(x, y) \land ¬Likes(y, y)
- g[y/d] satisfies this wff if and only if it satisfies Likes(x, y) but does not satisfy Likes(y, y) by the clauses for conjunction and negation.

Satisfaction Example

- Looking at the atomic case, we see that this is true
 just in case the pair <e, d> is in the extension of Likes,
 while the pair <d, d> is not.
- But this can only happen if e = a and d = b.
- Thus the only way our original g can satisfy our wff is if it assigns a to the variable x, as we anticipated.

Truth

- **Truth**. Let L be some first-order language and let \mathfrak{M} be a structure for L. A sentence \mathbf{P} of L is true in \mathfrak{M} if and only if the empty variable assignment g_0 satisfies \mathbf{P} in \mathfrak{M} . Otherwise \mathbf{P} is false in \mathfrak{M} .
- Just as we write $M \models \mathbf{Q}[g]$ if g satisfies a wff \mathbf{Q} in \mathfrak{M} , so too we write:

$$\mathfrak{M} = \mathbf{P}$$

if the sentence **P** is true in \mathfrak{M} .

Recall Satisfaction

- 7. Universal quantification. Suppose P is $\forall v \mathbf{Q}$. Then g satisfies \mathbf{P} in \mathfrak{M} if and only if for <u>every</u> $d \in D^{\mathfrak{M}}$, $g[\mathbf{v}/d]$ satisfies \mathbf{Q} .
- 8. **Existential quantification.** Suppose P is $\exists v \mathbf{Q}$. Then g satisfies \mathbf{P} in \mathfrak{M} if and only if for some $d \in D^{\mathfrak{M}}$, $g[\mathbf{v}/d]$ satisfies \mathbf{Q} .

First-Order Consequence

• Definition. A sentence \mathbf{Q} is a *first-order* consequence of a set $T = \{P_1, ...\}$ of sentences if and only if every structure that makes all the sentences in T true also makes \mathbf{Q} true.

First-Order Validity

• Definition. A sentence **P** is a *first-order validity* if and only if every structure makes **P** true.

Truth Example

- Let's look back at the structure given just above and see if the sentence $\exists x \exists y \text{ (Likes}(x, y) \land \neg \text{Likes}(y, y)) \text{ comes out as it should under this definition.}$
- First, notice that it is a sentence, i.e., it has no free variables.
- Thus, the empty assignment is appropriate for it.
- Does the empty assignment satisfy it?

Truth Example

 According to the definition of satisfaction, it does if and only if there is an object that we can assign to the variable x so that the resulting assignment satisfies

 $\exists y (Likes(x, y) \land \neg Likes(y, y))$

- But we have seen that there is such an object, namely, a.
- So the sentence is true in \mathfrak{M} ; in symbols, $\mathfrak{M} \mid \exists x \exists y \text{ (Likes}(x, y) \land \neg \text{Likes}(y, y)).$

Another Truth Example

- Consider the sentence
 ∀x ∃y (Likes(x, y) ∧ ¬Likes(y, y))
- Does the empty assignment satisfy this?
- It does if and only if for every object e in the domain, if we assign e to x, the resulting assignment g satisfies $\exists y \text{ (Likes}(x, y) \land \neg \text{Likes}(y, y))$
- But, as we showed earlier, g satisfies this only if g assigns a to x.
- If it assigns, say, b to x, then it does not satisfy the wff.
- Hence, the empty assignment does not satisfy our sentence, i.e., the sentence is not true in M.
- So its negation is; in symbols, $\mathfrak{M} \models \neg \exists x \exists y (Likes(x, y) \land \neg Likes(y, y)).$

Proposition 1

• Let \mathfrak{M}_1 and \mathfrak{M}_2 be structures which have the same domain and assign the same interpretations to the predicates and constant symbols in a wff \mathbf{P} . Let g_1 and g_2 be variable assignments that assign the same objects to the free variables in \mathbf{P} . Then $\mathfrak{M}_1 \models \mathsf{P}[g_1]$ iff $\mathfrak{M}_2 \models \mathsf{P}[g_2]$.

Remember

- First-order structures are mathematical models of the domains about which we make claims using FOL.
- Variable assignments are functions mapping variables into the domain of some first-order structure.
- A variable assignment satisfies a wff in a structure if, intuitively, the objects assigned to the variables make the wff true in the structure.
- Using the notion of satisfaction, we can define what it means for a sentence to be true in a structure.
- Finally, once we have the notion of truth in a structure, we can model the notions of logical truth, and logical consequence.

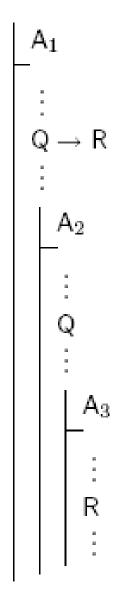
Soundness of FOL

- Theorem: If T ⊢ S, then S is a first-order consequence of set T.
- The proof is very similar to the proof of soundness for propositional logic.

Proof of \rightarrow Elim Case

- Suppose the nth step derives the sentence R from an application of → Elim to sentences Q → R and Q appearing earlier in the proof.
- Let A_1, \ldots, A_k be a list of all the assumptions in force at step n.
- By our induction hypothesis we know that Q → R
 and Q are both established at valid steps.
- In other words, they are first-order consequences of the assumptions in force at those steps.

→ Elimination



- F only allows us to cite sentences in the main proof or in subproofs whose assumptions are still in force.
- Hence, we know that the assumptions in force at steps Q → R and Q are also in force at R.
- Hence, the assumptions for these steps are among A_1, \ldots, A_k .
- Thus, both Q \rightarrow R and Q are first-order consequences of A_1, \ldots, A_k .
- We now show that R is a first-order consequence of A_1, \ldots, A_k .

Proof of \rightarrow Elim Case

- Suppose $\mathfrak M$ is a first-order structure in which all of A_1,\ldots,A_k are true.
- Then we know that $\mathfrak{M} \models \mathbf{Q} \rightarrow \mathbf{R}$ and $\mathfrak{M} \models \mathbf{Q}$, since these sentences are first-order consequences of A_1, \ldots, A_k .
- In that case, by the definition of truth in a structure we see that $\mathfrak{M} = R$ as well.
- So **R** is a first-order consequence of A_1, \ldots, A_k .
- Hence, step n is a valid step.
- Notice that the only difference in this case from the corresponding case in the proof of soundness of FT is our appeal to first-order structures rather than rows of a truth table.

- Suppose the n^{th} step derives the sentence **R** from an application of \exists Elim to the sentence $\exists x P(x)$ and a subproof containing R at its main level, say at step m.
- Let c be the new constant introduced in the subproof.
- In other words, **P**(c) is the assumption of the subproof containing R:

- Let A_1, \ldots, A_k be the assumptions in force at step n.
- Our inductive hypothesis assures us that steps j and m are valid steps.
- Hence $\exists x P(x)$ is a first-order consequence of the assumptions in force at step j.
- Those assumptions are a subset of A_1, \ldots, A_k
- **R** is a first-order consequence of the assumptions in force at step *m*.
- They are a subset of A_1, \ldots, A_k , plus the sentence P(c), the assumption of the subproof in which m occurs.

- We need to show that **R** is a first-order consequence of A_1 , . . . , A_k alone.
- To this end, assume that \mathfrak{M} is a first-order structure in which each of A_1, \ldots, A_k is true.
- We need to show that **R** is true in \mathfrak{M} as well.
- Since $\exists x P(x)$ is a consequence of A_1, \ldots, A_k , we know that this sentence is also true in \mathfrak{M} .
- Notice that the constant **c** cannot occur in any of the sentences A_1, \ldots, A_k , $\exists x P(x)$, or R, by the restriction on the choice of temporary names imposed by the \exists Elim rule.
- Since $\mathfrak{M} \mid = \exists x P(x)$, we know that there is an object, say b, in the domain of \mathfrak{M} that satisfies P(x).

- Let \mathfrak{M} ' be exactly like \mathfrak{M} , except that it assigns the object b to the individual constant c.
- Clearly, $\mathfrak{M}' \mid = \mathbf{P}(\mathbf{c})$, by our choice of interpretation of **c**.
- By Proposition 1, \mathfrak{M} ' also makes each of the assumptions A_1, \ldots, A_k true.
- But then $\mathfrak{M}' \mid = \mathbf{R}$, because **R** is a first-order consequence of these sentences.
- Since \mathbf{c} does not occur in \mathbf{R} , \mathbf{R} is also true in the original structure \mathfrak{M} , again by Proposition 1.