First-Order Structures Satisfaction

Introduction

- A First-Order Structure is analogous to a truth assignment in Propositional Logic.
- For quantified sentences, we need a domain of discourse.
- It represents circumstances that determine the truth values of all the sentences of a language.
- It does it in a way that identity and FO Quantifiers are respected.

A Sample World

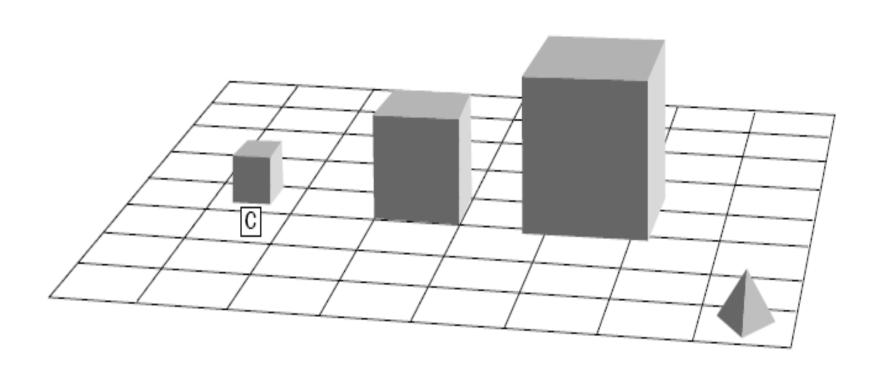


Figure 18.1: Mary Ellen's World.

Domain of Discourse

- Domain of discourse in this world is: $D = \{b_1, b_2, b_3, b_4\}$
- Let b₁ represent the left-most block, and go in order.
- Suppose that we have one name, c
- b_1 is the *referent* of the name **c**.

A Sample World

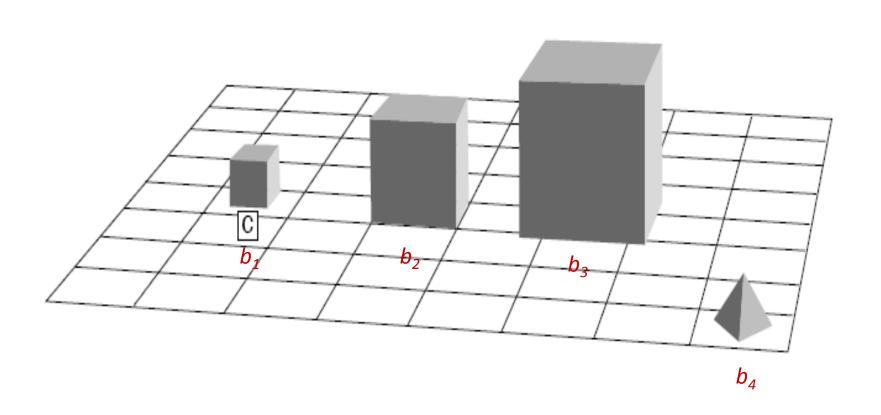


Figure 18.1: Mary Ellen's World.

Extensions

- Suppose in our language we only have the predicates: Cube, Larger, and =
- Assign the predicate Cube a subset of D:
 Cu = {b₁, b₂, b₃}
- Cu is said to be an extension of the predicate
 Cube in our structure.
- Assign the following pairs to the predicate Larger:
- $La = \{ \langle b_2, b_1 \rangle, \langle b_3, b_1 \rangle, \langle b_3, b_2 \rangle, \langle b_2, b_4 \rangle, \langle b_3, b_4 \rangle \}$
- La is said to be an extension of Larger.

Extension for Identity

Assign the following pairs to the predicate =:

=
$$\{\langle b_1, b_1 \rangle, \langle b_2, b_2 \rangle, \langle b_3, b_3 \rangle, \langle b_4, b_4 \rangle\}$$

Models

- In order to make truth assignments, we need:
 - A domain of discourse
 - Extensions of predicates
 - Referents of constants
- We will package them into one mathematical structure, called a "model."
- A model is a function that is defined on the:
 - predicates of the language,
 - the names of the language,
 - and the quantifier symbol \forall .

Models

- The function \mathfrak{M} is called a *first-order structure*, provided the following conditions are satisfied:
 - 1. $\mathfrak{M}(\forall)$ is a nonempty set D, called the *domain of discourse*.
 - 2. If **P** is an *n*-ary predicate symbol of the language, then $\mathfrak{M}(P)$ is a set of *n*-tuples $\langle x_1, ..., x_n \rangle$ of elements of D. This set is called the extension of **P** in \mathfrak{M} . It is required that the extension of the identity symbol consists of all pairs $\langle x, x \rangle$, for $x \in D$.
 - 3. If **c** is any name of the language, then $\mathfrak{M}(c)$ is an element of D, and is called the *referent* of c in \mathfrak{M} .

Modified Variable Assignments

- Consider wffs that start with a quantifier
- Let assignment g be defined on variable x.
- We want to say what it means for g to satisfy $\forall z$ Likes(x, z).
- We need to be able to take any object b in the domain of discourse and consider the variable assignment which is just like g except that it assigns the value b to the variable z.
- We will say that g satisfies our wff $\forall z$ Likes(x, z) if and only if every such modified assignment g' satisfies Likes(x, z).
- To make this a bit easier to say, we introduce the notation "g[z/b]" for the modified variable assignment.
- In general, g[v/b] is the variable assignment whose:
 - domain is that of g plus the variable \mathbf{v}
 - which assigns the same values as g,
 - except that the new assignment assigns b to the variable v.

Denotation

- If a variable assignment g is appropriate for a wff \mathbf{P} , then between \mathfrak{M} and g, all the terms (constants and variables) in \mathbf{P} have a denotation.
- For any term \mathbf{t} , we write $[t]_g^{\mathfrak{M}}$ for the denotation of t.
- Thus $[t]_g^{\mathfrak{M}}$ is:
 - $-\mathbf{t}^{\mathfrak{M}}$ if **t** is an individual constant
 - $-g(\mathbf{t})$ if **t** is a variable.