Completeness of Propositional Logic – Part II

Lemma 5

- **Lemma 5.** A set of sentences is <u>formally</u> <u>complete</u> if and only if for every <u>atomic</u> <u>sentence</u> A, $T \vdash_T A$ or $T \vdash_T \neg A$
- Proof. The direction from left to right is just a consequence of the definition of formal completeness.

Lemma 5

- The direction from right to left is another example of a proof by induction on wffs.
- Assume that $T \vdash_{\mathsf{T}} \mathsf{A}$ or $T \vdash_{\mathsf{T}} \mathsf{\neg} \mathsf{A}$ for every atomic sentence A .
- We use induction to show that for any sentence S, $T \vdash_{\mathsf{T}} \mathsf{S}$ or $T \vdash_{\mathsf{T}} \mathsf{\neg} \mathsf{S}$.
- The basis of the induction is given by our assumption.
- Let's prove the disjunction case.
- Assume S is of the form P v Q.
- By our inductive hypothesis, we know that T settles each of P and Q.
- If T proves either one of these, then we know that $T \vdash_{\mathsf{T}} \mathsf{P} \, \mathsf{v} \, \mathsf{Q}$ by $\mathsf{v} \, \mathsf{Intro}$.

Lemma 5

- Suppose that $T \vdash_{\mathsf{T}} \neg \mathsf{P}$ and $T \vdash_{\mathsf{T}} \neg \mathsf{Q}$. By merging these proofs and adding a step, we get a proof of $\neg \mathsf{P} \land \neg \mathsf{Q}$. We can continue this proof to get a proof of $\neg (\mathsf{P} \lor \mathsf{Q})$, showing that $T \vdash_{\mathsf{T}} \neg \mathsf{S}$, as desired.
- The other inductive steps are similar.

Proposition 6

- Proposition 6. Every <u>formally consistent</u> set of sentences can be expanded to a <u>formally</u> <u>consistent</u>, <u>formally complete</u> set of sentences.
- Proof. Let us form a list A₁, A₂, A₃, ..., of all the atomic sentences of our language, say in alphabetical order.
- Go through these sentences one at a time.
- Whenever you encounter a sentence A_i such that neither A_i nor ¬A_i is provable from the set, add A_i to the set.
- Doing so can't make the set formally inconsistent.

Proposition 6

- If you could prove \perp from the new set, then you could prove $\neg A_i$ from the previous set, by Lemma 2.
- If that were the case, you wouldn't have thrown A_i into the set.
- The end result of this process is a set of sentences which is formally complete.
- It is also formally consistent.
- After all, any proof of \bot is a finite object, and so could use at most a finite number of premises.
- In that case, we could have given a proof of \bot at some point in the process of expanding the sentences.

Completeness

- **Theorem** (Completeness of F_T) If a sentence S is a tautological consequence of a set T of sentences then $T \vdash_T S$.
- **Proof**. Suppose $F \not\vdash_{\mathsf{T}} \mathsf{S}$.
- By Lemma 2, $T \cup \{\neg S\} \vdash_T \bot$
- In other words, $T \cup \{\neg S\}$ is formally consistent.
- This set can be expanded to a <u>formally consistent</u>, <u>formally complete</u> set by Proposition 6.

Completeness

- By our Proposition 4, this set is tt-satisfiable.
- Suppose h is a truth value assignment that satisfies this set.
- h makes all the members of T true, but S false, because $T \cup \{\neg S\}$ is tt-satisfiable.
- But this means that S is not a tautological consequence of T, a contradiction.