Completeness of Propositional Logic

Completeness of F_T

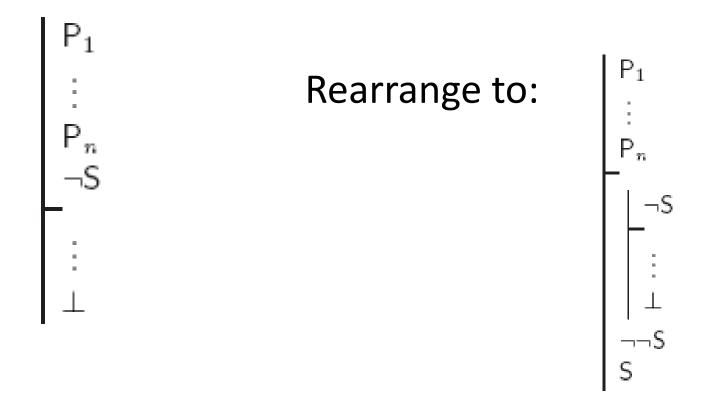
• **Theorem** (Completeness of F_T) If a sentence S is a tautological consequence of a set T of sentences then $T \vdash_T S$.

Lemma 2

- **Lemma 2.** $T \cup \{\neg S\} \vdash_{\top} \bot$ if and only if $T \vdash_{\top} S$
- **Proof.** Assume $T \cup \{\neg S\} \vdash_T \bot$
- In other words, there is a proof of \bot from premises ¬S and certain sentences $P_1,...,P_n$ of T.

Proof cont'd

Arrange the premises so that:



Other direction

- **Proof.** Assume $T \vdash_{\mathsf{T}} \mathsf{S}$
- In other words, there is a proof of S from certain sentences $P_1,...,P_n$ of T.
- You finish!

Reformulating Completeness

- Lemma 2 shows that our assumption that $T \nvdash_T S$ is tantamount to assuming that $T \cup \{\neg S\} \nvdash \bot$
- **Definition.** A set of sentences is *formally* consistent if and only $T \nvdash_{\mathsf{T}} \bot$, that is, if and only if there is no proof of \bot from T in F_{T} .
- Theorem (Reformulation of Completeness) Every formally consistent set of sentences is tt-satisfiable.
- The Completeness Theorem results from applying this to the set $T \cup \{\neg S\}$.

Outline of Proof

- Completeness for formally complete sets: First
 we will show that the completeness theorem
 holds of any formally consistent set with an
 additional property, known as formal
 completeness.
 - **Definition.** A set *T* is *formally complete* if for any sentence S of the language, either $T \vdash_T S$ or $T \vdash_T \neg S$.
 - This means that the set T is so strong that it settles every question that can be expressed in the language.
 - In other words, for any sentence, either it or its negation is provable from T.

Lemma 3

Lemma 3. Let *T* be a formally consistent, formally complete set of sentences, and let R and S be any sentences of the language.

- 1. $T \vdash_{\mathsf{T}} (\mathsf{R} \land \mathsf{S}) \text{ iff } T \vdash_{\mathsf{T}} \mathsf{R} \text{ and } T \vdash_{\mathsf{T}} \mathsf{S}$
- 2. $T \vdash_{\mathsf{T}} (\mathsf{R} \mathsf{v} \mathsf{S}) \mathsf{iff} \ T \vdash_{\mathsf{T}} \mathsf{R} \mathsf{or} \ T \vdash_{\mathsf{T}} \mathsf{S}$
- 3. $T \vdash_{\mathsf{T}} \neg \mathsf{S} \text{ iff } T \vdash_{\mathsf{S}} \mathsf{S}$
- 4. $T \vdash_{\mathsf{T}} (\mathsf{R} \rightarrow \mathsf{S}) \text{ iff } T \vdash_{\mathsf{T}} \mathsf{R} \text{ or } T \vdash_{\mathsf{T}} \mathsf{S}$
- 5. $T \vdash_{\mathsf{T}} (\mathsf{R} \longleftrightarrow \mathsf{S})$ iff either $T \vdash_{\mathsf{T}} \mathsf{R}$ and $T \vdash_{\mathsf{T}} \mathsf{S}$ or $T \nvdash_{\mathsf{T}} \mathsf{R}$ and $T \nvdash_{\mathsf{T}} \mathsf{S}$

Proof of Lemma 3 (1)

- Left-to-right: Use ^ Elimination.
- Right-to-left: Proof by scissors:

Proof of Lemma 3 (2)

- Right-to-left: v-Introduction
- Left-to-right: [...]

Proof of Lemma 3 (3)

• **Proof.** Left-to-right: By assumption, we can give a proof of $\neg S$ from T. Suppose we can also give a proof of S. In that case T is not formally consistent, as we can give a proof of \bot .

Right-to-left: If we cannot give a proof of S from T, then by the definition of formally complete, we can give a proof of ¬S from T.

- Proposition 4. Every formally consistent, formally complete set of sentences is ttsatisfiable.
- Lemma 3 tells us that we can give a proof for any sentence in a language that is formally complete and consistent.
- Proposition 4 tells us that we can find a truth function \hat{h} , making that set true.

- **Proof**. Let *T* be the formally consistent, formally complete set of sentences.
- Define an assignment h on the atomic sentences of the language as follows.
- If T \vdash_T A then let h(A) = TRUE; otherwise let h(A) = FALSE.
- The function h is defined on all the sentences of our language, atomic or complex.
- We claim that for all wffs S, h (S) = TRUE if and only if T⊢_T S.

- The proof of this is a good example of the importance of proofs by induction on wffs.
- The claim is true for all atomic wffs from the way that h is defined, and the fact that h and \hat{h} agree on atomic wffs.
- We now show that if the claim holds of wffs R and S, then it holds of (R ∧ S), (R ∨ S), ¬R, (R → S) and (R ← S).
- These all follow easily from Lemma 3.

- Consider the case of disjunction.
- We need to verify that $h(R \vee S) = TRUE$ if and only if $T \vdash_T (R \vee S)$.
- To prove the "only if" half, assume that \hat{h} (R V S) = TRUE.
- Then, by the definition of h, either h(R) = TRUE or $\hat{h}(S) = TRUE$ or both.
- Then, by the induction hypothesis, either $T \vdash_{\mathsf{T}} \mathsf{R}$ or $T \vdash_{\mathsf{T}} \mathsf{S}$ or both.
- But then by lemma 3, $T \vdash_{\mathsf{T}} (\mathsf{R} \lor \mathsf{S})$, which is what we wanted to prove.
- The other direction is proved in a similar manner.