Multiple Quantifiers

Presidential Example

 You may fool all of the people some of the time; you can even fool some of the people all of the time; but you can't fool all of the people all of the time. [Abe Lincoln]

Multiple uses of a Single Quantifier

What do the following two sentences mean?
 ∃x ∃y [Cube(x) ^ Tet(y) ^ LeftOf(x, y)]
 ∀x ∀y [(Cube(x) ^ Tet(y)) → LeftOf(x, y)]

Prenex Form

- Prenex form. All quantifiers are out in front.
- The quantifiers from the prior example are in prenex form.
- There is no need for it:
 ∃x [Cube(x) ^ ∃y (Tet(y) ^ LeftOf(x, y))]
 ∀x [Cube(x) → ∀y (Tet(y) → LeftOf(x, y))]

T	l _ _ !	C C:	_1
irans	iation	Confirme	a

P	Q	R	(P ^ Q) -> R		P -> (Q -> R)	
F	F	F	F	Т	Т	
F	F	Т	F	T	Т	
F	Т	F	F	Т	Т	
F	Т	Ť	F	Ţ	Т	
T	F	F	F	T	Ť	T
Т	F	Т	F	Т	Т	T
Т	т	F	Т	F	F	F
Т	Т	Т	Т	T	Т	τ

Distinct Variables and Objects

- Notice that in "∀x ∀y" the same object can be assigned to x and y.
- You cannot assume that $x \neq y$.
- In fact, $\forall x \ \forall y \ P(x,y)$ logically implies:

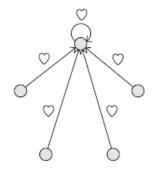
$$\forall x P(x,x)$$

• $\exists x P(x,x)$ logically implies:

$$\exists x \exists y P(x,y)$$

Order of Quantifiers

 $\forall x \exists y \text{ Likes}(x,y) \text{ is } \textbf{not} \text{ the same as:}$ $\exists y \forall x \text{ Likes}(x,y) \text{ Consider:}$



Order of Quantifiers

• What do the following sentences mean?

 $\forall x \exists y \text{ Likes}(y, x)$

 $\exists y \ \forall x \ Likes(y, x)$

Exactly One

 $\exists x (Cube(x) \land \forall y (Cube(y) \rightarrow y = x))$

Step-by-Step Method of Translation

- Each cube is to the left of a tetrahedron.
- Start with:

 $\forall x (Cube(x) \rightarrow is-to-the-left-of-a-tetrahedron(x))$

• "is-to-the-left-of-a-tetrahedron" can be formalized as:

 $\exists y (Tet(y) \land Leftof(x, y))$

• Resulting in:

 $\forall x (Cube(x) \rightarrow \exists y (Tet(y) \land Leftof(x, y)))$

Example

• Translate:

No cube to the right of a tetrahedron is to the left of a larger dodecahedron.

Paraphrasing the Original Sentence

- Consider: "If a freshman takes a logic class, then he or she must be smart."
- Using step-by-step procedure:
 ∃x(Freshman(x) ^ ∃y(LogicClass(y) ^ Takes(x,y))) → Smart(x)
- Not a sentence.

Paraphrasing the Original Sentence

- Consider: "If a freshman takes a logic class, then he or she must be smart."
- Paraphrase sentence: "Every freshman who takes a logic class must be smart."
- Using step-by-step procedure:
 ∀x[(Freshman(x) ^ ∃y(LogicClass(y) ^ Takes(x,y))) → Smart(x)]

Donkey Sentences

- Consider: "Every farmer who owns a donkey beats it."
- Step-by-step:

```
\forallx(Farmer(x) ^ \existsy(Donkey(y) ^ Owns(x,y))) \rightarrow Beats(x,y)
```

- Y occurs free in "Beats(x,y)"
- Move parentheses:

```
\forallx(Farmer(x) \land \existsy(Donkey(y) \land Owns(x,y) \landBeats(x,y)))
```

Donkey Sentences

• The resulting sentence does not capture the meaning of the English sentence:

```
\forallx(Farmer(x) \land \existsy(Donkey(y) \land Owns(x,y) \landBeats(x,y)))
```

- Instead, paraphrase the original sentence from: "Every farmer who owns a donkey beats it."
- to: "Every donkey owned by any farmer is beaten by them." $\forall x (Donkey(x) \rightarrow \forall y ((Farmer(y) \land Owns(y,x)) \rightarrow Beats(y,x)))$

Ambiguity

Every minute a man is mugged in New York
 City. We are going to interview him tonight.