Temporal Logic

Michael Mrozek Andy Spencer

CSSE490

November 3, 2008

Purpose

The variable foo at some time equals 1, and later equals 2

•
$$(foo = 1) \lor (foo = 2)$$

•
$$(foo = 1) \land (foo = 2)$$

•
$$\mathcal{E}t_1\mathcal{E}t_2(t_1 \leq t_2 \land ValueAt(foo, t_1) = 1 \land ValueAt(foo, t_2) = 2)$$

•
$$\diamondsuit(foo = 1 \land \diamondsuit(foo = 2))$$

Modal Logic

- Formal logic including modalities
- Operators for necessarily and possibly
- Can be written in terms of each other (they form a "dual pair")

•
$$\Diamond P \leftrightarrow \neg \Box \neg P$$

•
$$\Box P \leftrightarrow \neg \Diamond \neg P$$

Temporal Logic

- A form of modal logic
 - possibly → eventually/in the future
 - necessarily → always/globally
- Propositional logic $+ \diamondsuit + \Box =$ Propositional temporal logic
- Linear Temporal Logic
- Computational Tree Logic
 - *E*□Hungry()
- Probabilistic CTL

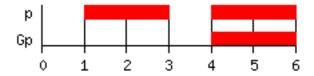
Future (\diamondsuit)

 $\diamondsuit \psi$: ψ must be true sometime in the future

If the user clicks the print button, eventually the file will be printed $\forall \Box (PrintButtonPressed() \rightarrow \Diamond Printed())$

Globally (□)

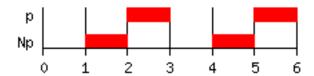
 $\Box \psi$: ψ must be true at all times in the future



The system will always work and never crash $\forall \Box (SystemWorking() \land \neg SystemCrashed()$

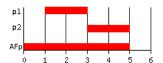
Next (○)

 $\bigcirc \psi$: ψ must be true in the immediate future



All (A) and Exists (\mathcal{E})

 $\mathcal{A}\psi$: ψ must be true in all possible futures



No matter what I will be hungry at some point

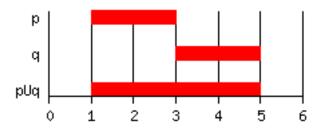
A♦Hungry()

 $\mathcal{E}\psi$: ψ must be true in at least one possible future

There's a possibility I'll be hungry at some point & Hungry()

Until (\mathcal{U})

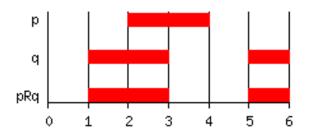
 $\phi \mathcal{U} \psi$: ψ is true at some point. ϕ is true at least until that time



I'll be studying until class starts Studying()\(\mathcal{U}\) ClassStarts()

Release (\mathcal{R})

 $\phi \mathcal{R} \psi$: ϕ is true until ψ is true, if ever



I'll be studying until class starts Studying() \mathcal{R} ClassStarts()

Laws of Inference

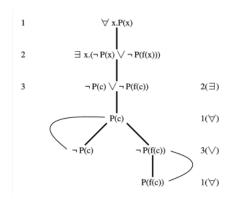
- All predicate logic inference rules
- Distribution of \square over \rightarrow : $\square(A \rightarrow B) \rightarrow (\square A \rightarrow \square B)$
- Distribution of \bigcirc over \rightarrow : $\bigcirc(A \rightarrow B) \rightarrow (\bigcirc A \rightarrow \bigcirc B)$
- Expansion of \Box : $\Box A \rightarrow (A \land \bigcirc A \land \bigcirc \Box A)$
- Induction: $\Box(A \to \bigcirc A) \to (A \to \Box A)$
- Linearity: $\bigcirc A \leftrightarrow \neg \bigcirc \neg A$
- Transitivity: $\Box\Box A \leftrightarrow \Box A$
- Distribution: $\bigcirc(A \land B) \leftrightarrow (\bigcirc A \land \bigcirc B)$
- Distribution: $\Box(A \land B) \rightarrow (\Box A \land \Box B)$
- Contraction: $A \land \bigcirc \Box A \rightarrow \Box A$
- Distribution: $(\Box A \land \Box B) \rightarrow \Box (A \land B)$
- Exchange: $\Box \bigcirc A \leftrightarrow \bigcirc \Box A$

Soundness/Completeness

Syntactic Consequence: $A \vdash B$ **Semantic Consequence**: $A \models B$

Soundness: No false positives.
$$\vdash \rightarrow \models$$
 Completeness: No false negatives. $\models \rightarrow \vdash$ $\models \Box(A \rightarrow \bigcirc A) \rightarrow (A \rightarrow \Box A)$ $s \models \Box(A \rightarrow \bigcirc A) \land A \land \neg \Box A$ $s \models \neg \Box A \rightarrow s' \models \neg A$ $s, s_1, s_2, ..., s'$ $s \models A \land (A \rightarrow \bigcirc A) \rightarrow s_1 \models A$ $s' \models A \land s' \models \neg A \rightarrow \bot$

Soundness/Completeness



Strengths and Weaknesses

Strengths

- Easier to represent common situations
- Easy to learn; few operators
- Works well with existing techniques

Weaknesses

- Not strictly necessary
- Can't represent potentials

Applications

- Natural Language
- Artificial Intelligence
 - Frame problem
 - Event calculus
- Program Specification/Verification

	Statement	Progress axioms
li:	v := expression	$\vdash l_i \rightarrow \Diamond l_{i+1}$
li:	if B then	$\vdash (l_i \land \Box B) \rightarrow \Diamond l_t$
lt:	S1	
	else	$\vdash (l_i \land \Box \neg B) \rightarrow \Diamond l_f$
lf:	S2	
li:	while B do	$\vdash (l_i \land \Box B) \rightarrow \Diamond l_t$
lt:	S1;	and the second second
lf:	S2	$\vdash (l_i \land \Box \neg B) \rightarrow \Diamond l_f$

Applications

- Natural Language
- Artificial Intelligence
 - Frame problem
 - Event calculus
- Program Specification/Verification

	Statement	Progress axioms
li:	v := expression	$\vdash l_i \rightarrow \Diamond l_{i+1}$
li:	if B then	$\vdash (l_i \land \Box B) \rightarrow \Diamond l_t$
lt:	S1	
	else	$\vdash (l_i \land \Box \neg B) \rightarrow \Diamond l_f$
lf:	S2	
li:	while B do	$\vdash (l_i \land \Box B) \rightarrow \Diamond l_t$
lt:	S1;	and the second second
lf:	S2	$\vdash (l_i \land \Box \neg B) \rightarrow \Diamond l_f$