Text Document Classification Using Swarm Intelligence

Mark Jenne and David Pick

Introduction

- Information retrieval systems have contributed significantly to the organization of information
- Success of such systems still depends on maintenance
 - Indexing and cataloging new information
- System for automatic organization of digital documents in PDF format
 - Based on ant-clustering algorithm

Ant Clustering Algorithm

- Proposed in 1994 for analysis and classification of numerical data
- Input data set of N l-dimensional vectors to be clustered
- Input data are spread over a two-dimensional grid of size m x m
- Colony of ants moves on the grid, picking up, carrying, and dropping off objects based on some probabilistic rules

Ant Clustering Algorithm

- Ants have a perception grid of size 3 x 3
- To start the iterative process, objects and ants are placed randomly on the grid
- Ants start moving randomly
 - If not carrying an object and finds an object in its neighborhood
 - picks up with probability inversely proportional to number of similar objects in neighborhood
 - If carrying an object and finds other objects in its neighborhood
 - drops with probability proportional to object's similarity with the perceived ones

Probability Equations

$$P_{pick}(i) = \left(\frac{k_p}{(k_p + f(i))^2}\right)$$

$$P_{drop}(i) = \left(\frac{f(i)}{(k_d + f(i))^2}\right)$$

Standard Ant-Clustering Algorithm

```
procedure ACA (max it, kp, kd)
   place every item i on a random cell of the grid
   place every ant k on a random cell of the grid unoccupied by ants
   t ← 1
   while t < max it do,
       for i = 1 to N do, // for every ant
            if unladen ant AND cell occupied by item \mathbf{x}_i, then
                 compute f(\mathbf{x}_i) and p_p(\mathbf{x}_i)
                 pick up item \mathbf{x}_i with probability p_p(\mathbf{x}_i)
            else if ant carrying item \mathbf{x}_i AND cell empty, then
                          compute f(\mathbf{x}_i) and p_d(\mathbf{x}_i)
                         drop item \mathbf{x}_i with probability p_d(\mathbf{x}_i)
            end if
            move to a randomly selected neighboring and unoccupied cell
        end for
        t \leftarrow t + 1
   end while
   print location of items
end procedure
```

ACA For Text Clustering

- PDFs first converted to text documents
- Transformed into collections of words that will represent an object in the grid
 - Obtained through calculation of relative frequency of a word in the documents

$$F_{j}(w) = \frac{f_{j}(w)}{\sum_{v} f_{j}(v)}; \quad v \neq w$$

ACA For Text Clustering

Cosine measure is used as a measure of dissimilarity

$$sim(D_D, D_Q) = \frac{\sum_{k=1}^{N} F_{Dk} F_{Qk}}{\sqrt{\sum_{k=1}^{N} F_{Dk}^2 \sum_{k=1}^{N} F_{Qk}^2}}$$

- Each document is transformed into an object which is an ldimensional vector corresponding to relative frequencies of relevant words
 - Ant-clustering algorithm for text documents is applied

Initial Tests

- Algorithm was not converging to a stable configuration in the grid
- Ants were constantly building and destructing clusters
- To promote stabilization in the grid, picking constant parameter was gradually cooled down
 - reduce probability of an ant picking up an object as more iteration steps pass
- Resulted in a final, stable clustering solution

Performance Evaluation

Table IV – Simulation results for the data set containing 90 documents. *No*: number of objects in the cluster; *Nw*: number of objects classified incorrectly.

Cluster label	Group	No	Nw
C_1	EC	13	1
C ₂	FS	9	2
C_3	ANN	3	0
C_4	FS	3	1
C ₅	FS	9	3
C_6	ANN	9	4
C ₇	ANN	8	2
C ₈	FS	19	9
C ₉	ANN	11	4