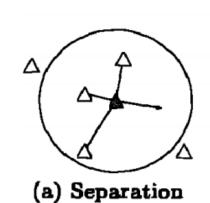
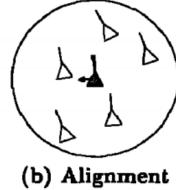
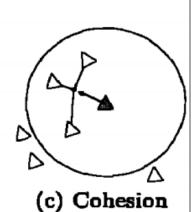
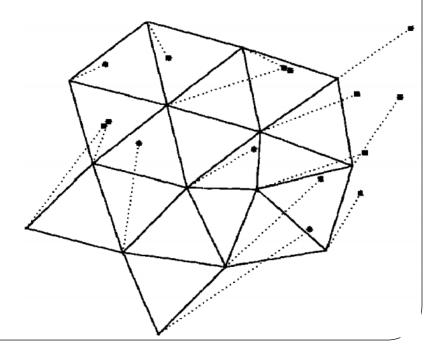
Particle Swarm Models for Swarmbased Network Sensor Systems

Chris Covet and Brian Sherman


Network Applications


- Avalanche Victims
 - Sandia National Laboratories


- Miniature Sensor Systems
 - Passive Communications
 - Self-organization
 - Land Mines, Traffic Control, Exploration


Particle Swarm Basics

- Three Behaviors
 - Separation
 - Alignment
 - Cohesion
- Alignment Behavior
 - Minimum and Maximum Distances
 - Formation based on local interactions

The Algorithm

Loop $\forall p_i \in P, i = 1, ..., N$ Process boundaries
Loop $\forall p_j \in P_i, j = 1, ..., N_i$ Process neighbor p_j Calculate new direction end Loop
Move in new direction end Loop

Table 2: Swarm Algorithm Variables

Variable	Description	
\overline{P}	The set of mobile particles	
N	The population size (mobile particles), $ P $	
Pi	The ith particle in P	
P_i	The set of particles in p_i 's neighborhood (includes waypoints)	
N_i	The number of particles in p_i 's neighborhood, $ P_i $	
p_{j}	The j^{th} particle in P_i	

Moving Particles

A particle's target is selected:

$$v_{target} = F(boundary, P_i)$$

• For boundaries, the closest point is considered a particle:

$$v_{attract} = p_b - p_i, b \in \{top, bottom, left, right\}$$
(3)
$$w = -A \left(1 - \frac{d}{d_{max}}\right)^2$$
(4)
$$v_{target} = v_{target} + wv_{attract}$$
(5)

Moving Particles (Cont.)

$$w_{periph} = B\left(\frac{1}{2}\left(\cos\theta + 1\right)\right)^{2}$$

$$v_{attract} = p_{j} - p_{i}$$

$$v_{align} = direction(p_{j})$$
(6)
(7)

For waypoints

$$w = Cw_{periph} \left(\frac{d}{d_{max}}\right)^2 \left(-v_{align} \cdot \frac{v_{attract}}{d}\right) \tag{9}$$

For particles

$$w = \begin{cases} w_{periph} \left(\frac{d - d_{min}}{d_{max} - d_{min}} \right)^2 : d \ge d_{min} \\ -Dw_{periph} \left(1 - \frac{d}{d_{min}} \right)^2 : d < d_{min} \end{cases}$$
(10)

Moving Particles (Cont.)

• The contribution per particle:

$$(v_{new})_j = Ev_{align} + wv_{attract} \tag{11}$$

• The new target for the current particle:

$$v_{target} = \sum_{j} (v_{new})_{j} \tag{12}$$

• The particle's new position:

$$p_i' = p_i + \alpha_s s_{max} v_{new} \tag{13}$$

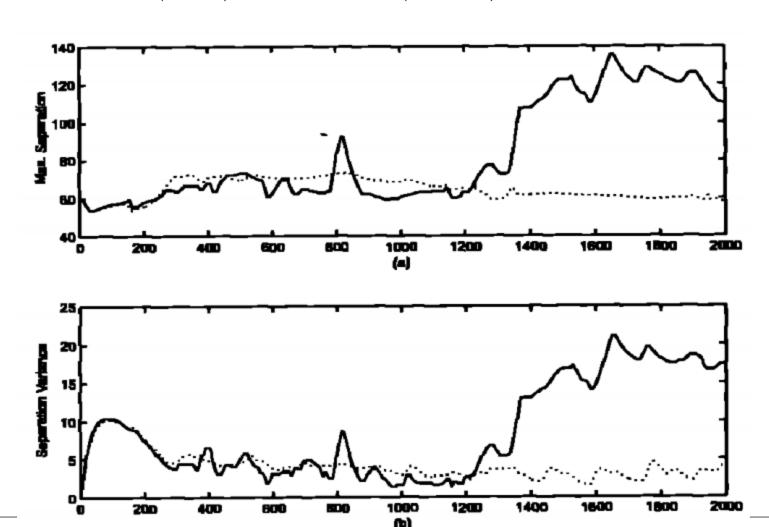
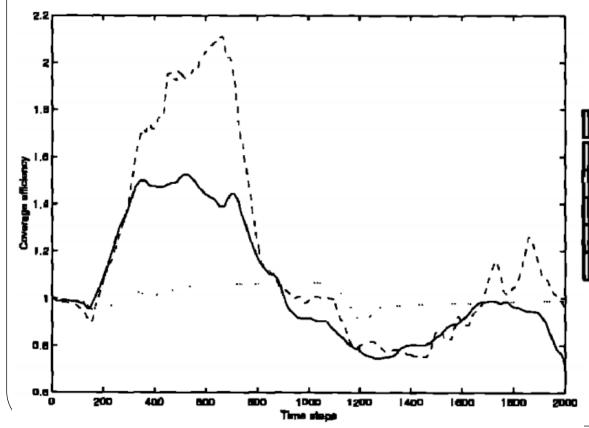

Tuning Constants

Table 3: Swarm Parameters

Parameter	Description	
A	Boundary weight (Eq. 4)	
В	Peripheral vision weight (Eq. 6)	
C	Waypoint weight (Eq. 9)	
D	Repulsion weight (Eq. 10)	
\mathbf{E}	Alignment weight (Eq. 11)	
α,	Speed factor (Eq. 13)	
θ_{max}	Max turn angle (Fig. 6)	
8max	Max particle speed (Eq. 13)	
d_{max}	Max sight distance	


Varying Connectivity with E

• E = 0.05 (solid) vs E = 0.50 (dotted)

Varying Coverage Efficiency with E

• E = 0.50 unguided (light dotted) vs E = 0.05 guided (dotted) vs E = 1.0 guided (solid)

E	Unguided	Guided
0.05	0.1607	0.4487
0.10	0.0539	0.4342
0.25	0.0648	0.3317
0.50	0.0431	0.2847
1.00	0.0353	0.2571