COMPLEX SYSTEMS ENGINEERING

Chris Covert and Brian Sherman

Large Engineering Failures

- Complex system development tends to fail when performed in the classical sense
 - Over 50% "Challenged"
 - Under 20% on time
 - Other 30% are abandoned

Eg. FAA Advanced Automation System

Due to inherent complexity

System Function – Responsible Organization	Years of Work (outcome)	Approx. Cost M=Million, B=Billion
Vehicle Registration, Drivers license – Calif. DMV [3,10,23,24,39,40]	1987-1994 (scrapped)	\$44M
Automated reservations, ticketing, flight schedul- ing, fuel delivery, kitchens and general administration – United Air Lines [27]	Late 1960s-Earl y 1970s (scrapped)	\$50M
State wide Automated Child Support System (SACSS) – California [12,37]	1991-1997 (scrapped)	\$110M
Hotel reservations and flights – Hilton, Marriott, Budget, American Airlines [26]	1988-1992 (scrapped)	\$125M
Advanced Logistics System – Air Force [38]	1968-1975 (scrapped)	\$250M
Taurus Share trading system – British Stock Exchange [16]	1990-1993 (scrapped)	\$100-\$600M
IRS Tax Systems Modern- ization projects [34]	1989-1997 (scrapped)	\$4B
FAA Advanced Automation System [35]	1982-1994 (scrapped)	\$3-\$6B
London Ambulance Service Computer Aided Dispatch System [30]	1991-1992 (scrapped)	\$2.5M, 20 lives

Complex System Innovations

 The field of complex systems helps solve some problems with these failures

- Two answers are provided:
 - Change of objectives
 - Use of an evolutionary process

Evolution vs Incremental Engineering

 Evolution assumes many different systems exist at once, changing in parallel

- Testing is done "in the field"
 - Learning about effective solutions occurs through direct feedback with the environment

Enlightened Evolutionary Engineering

- Different strategies are introduced
- Most efficient strategies spread throughout the system
- Less efficient strategies are slowly abandoned

Application to Air Traffic Control

- Must keep the old system in place while using the new system for redundancy
 - Train new employees with the new system
 - The old employees may override using the old system in emergencies