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Abstract
A description of the measurement procedure, related theory and experimental
data analysis of the magnetic susceptibility of materials is given. A short review
of previous papers in the line of this subject is presented. This work covers the
whole experimental process, in detail, and presents a pragmatic approach for
pedagogical sake.

1. Introduction

The physical properties of matter are quantified by a set of numbers, the characteristic
parameters of each substance. In the case of magnetic interactions, the materials have one of
the three properties: diamagnetisms, paramagnetism or ferromagnetism. The specific presence
in the matter of one of these characteristics depends on the number of paired electronic spins
in the sample. In particular, the diamagnetism is originated by the magnetic orbital moment
induced by the application of an external magnetic field with intensity

−→
H . The paramagnetism

and ferromagnetism have their origins in the averaged alignment of the spin magnetic moment
in the direction of

−→
H [1–4]. The quantification of the response of the matter in terms of these

three properties is named the magnetic susceptibility (χ ), which is a dimensionless constant.
Nevertheless, the experimental statement of the magnetic nature of a sample is not an easy
task. In general, the measurement of this quantity implies the determination of the components
of a second rank tensor [2, 3].
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Table 1. Factor conversions in different expressions of the magnetic susceptibility from cgs to the
SI unit system, ρ is the density of the substance in kg m−3 and Wa is the molar mass in kg mol−1.

Susceptibility name Symbol Equation SI Units cgs/SI

Bulk χ or χν M/H Dimensionless 1/4π

Mass χρ χν/ρ m3 kg−1 103/4π

Molar χM χνWa/ρ M3 mol−1 106/4π

From the thermodynamics point of view, χ is the ratio of the magnetization
−→
M of a sample

under the influence of an external magnetic field
−→
H , where the field intensity tends to zero

[5–7], that is

χ = lim
|�−→

H |→0

|�−→
M |

|�−→
H |

. (1)

If we deal with linear and isotropic materials, a magnetization proportional to the external
magnetic field appears, and then, the second rank tensor χ is reduced to

M = χH. (2)

This expression is usually employed in the assessment of the magnetic susceptibility.
It must be pointed out that the magnitude of χ depends on the system of units used. For
instance, it is possible to find χ in chemical handbooks, with cgs units. Table 1 shows the
factor conversion to SI for volumetric, mass and molar χ .

On the other hand, electromagnetism and thermodynamics texts, for basic and advanced
students, deal with the magnetic properties of matter. Nevertheless, there is a lack of
information about experimental developments intended to perform measurements of the
magnetic properties, especially χ , although in a few specialized books some techniques
to quantify the magnetic susceptibility can be found [8]. Also, a couple of methods using a
weighing scale were reported in 1993 by Davis [9].

Because analytical scales are easily found in teaching and research laboratories, their
use is one of the most versatile and economic procedures to measure magnetic susceptibility.
They can be used with solids or liquids without any problem. Nevertheless, this is not a
measurement modality which is widely available in an undergraduate science laboratory. The
description of this technique is usually presented in research level papers or texts [10–12] that
are not pedagogical in order to be used as a laboratory practice.

This paper presents the necessary stages to successfully undertake the experimental setup
of this technique to measure χ in solids and liquids. Special emphasis is given to the
determination of the size and geometry of the samples.

2. Theory

Any substance is magnetized when exposed to a magnetic field. If the magnetization vector
points in the same direction of the external field, the material is called paramagnetic or
ferromagnetic and diamagnetic if the direction is opposite. In any case, the magnetized
sample becomes a new permanent or induced magnet and then it exerts a force of attraction or
repulsion on the external source of the magnetic field. This magnetic force was, in this study,
detected with an analytical scale, as shown in figure 1. The magnetic force close to a magnetic
dipole �m, in the presence of an external non-uniform magnetic field is [8]

�F = ( �m · �∇) �B. (3)
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Figure 1. Schematic diagram of the experimental setup, showing the main components.

On the other hand, the magnetic induction �B, in a point P indicated by the position vector
�r , due to a dipole with the magnetic moment �m, is given by the expression

�B = µo

4π r3
[3( �m · r̂)r̂ − �m], (4)

where the constant µo/4π = 10−7 N A−2 is the magnetic permeability and r̂ is an unitary
vector along the direction of �r , which goes from the dipole position to P. If �m and �r are along
the z-direction, then �m · �r = mz and we just deal with the component of �B along z, that is,
equation (4) reduces to

BZ = µomz

2πz3
. (5)

Equation (3) is valid where a magnetic moment is induced in the matter and moreover
when the magnetic induction has the form of equation (4) or (5). These arguments are
essential to obtain the model for the magnetic susceptibility of matter in the presence of a
dipolar magnetic field.

2.1. Model I: solution to a semi-infinite medium

In order to model the interaction force between the sample and the magnet, we assume that
the sample is an infinite plane in which, in this case we deduce the force from equation (3).
The typical image method proposed by Davis [9], is used, considering the system formed
with the original dipole surrounded by air in front of an infinite and magnetizable plane (the
sample). Then, an image dipole of the magnetic moment �mi is introduced to replace the
sample simplifying the calculation. If we assume that the plane z = 0 matches the surface of
the sample, �m is the magnetic moment of the dipole which magnetizes the sample which is
placed at a distance d under the plane along the z-axis, then, both the real and image dipoles
are separated by a distance 2d. So, the z-component in equation (3) leads to

Fz = mi

[
∂

∂z

(
µom

2πz3

)]
. (6)
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This equation, when evaluated at z = 2d, becomes

Fz = 3mi

µom

32πd4
. (7)

In order to find the relationship between m and mi (the z-components of �m and �mi ,
respectively) we apply boundary conditions on the surface of the sample. Analysing a small
volume enclosing the boundary between the two media, the continuity conditions can be
written as (provided that the current density j = 0)

( �B1 − �B2) · n̂ = 0, (8)

( �H 2 − �H 1) · t̂ = 0, (9)

where n̂(t̂) is an unitary vector which is normal or tangential to the interface of the surfaces,
respectively.

As a consequence of j = 0, we have �∇ × �H = �0, implying that

�H = �∇ϕm, (10)

where ϕm is a scalar potential. At this point, we must remember the definition of the magnetic
induction vector

�B = µ �H (11)

and substituting (10) into (9), it is found that

∂ϕm1

∂t
− ∂ϕm2

∂t
= 0, (12)

where ∂
∂t

is the tangential derivate, hence

ϕm1 = ϕm2 . (13)

It is important to remark on the assumption that ϕm1 (r) = ϕm2 (r) = 0, as r → ∞.
So, substituting equations (11) and (10) into equation (8) and using the normal derivate the
following equation can be obtained relating the normal component of the magnetic field at
each side:

µo
∂ϕm1

∂n
= µ1

∂ϕm1

∂n
. (14)

The explicit form of ϕm1 and ϕm2 can now be deduced. This is a point outside the sample
which has the magnetic potential φm,

ϕm1 = 1

4π

[
m (z − d)

r3
1

+
mi (z + d)

r3
2

]
, (15)

where r2
1 = x2 + y2 + (z − d)2 and r2

1 = x2 + y2 + (z + d)2.
For a point P′ located inside the sample, the magnetized medium can be considered as a

screening of the original dipole effect, so the magnetic potential will be

ϕm2 = c

4π

(z − d)

r3
1

, where c = constant. (16)

Applying the boundary conditions to ϕm1 and ϕm2 in the origin, and using equations (10)
and (11), we have the following equalities:

µo

(
m

d3
+

mi

d3

)
= µ1

(
c

d3

)
(17)
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and

m (z − d)

r3
1

+
mi (z + d)

r3
2

∣∣∣∣
z=0

= c (z − d)

r3
1

∣∣∣∣
z=0

, (18)

and a linear equation system is obtained to determine c and mi :

µo(m + mi) = µ1c, m − mi = c,

where µ1 = µoµr , with µr being the relative permittivity. Using the definition µ1 = µo(1+χ),
we get µr = 1 + χ . Hence, the solutions to the equation system are

mi = µr − 1

µr + 1
m = χ

χ + 2
m, c = 2

µr + 1
m = 2

χ + 2
m.

Substituting the first of these equations into equation (7), the following expression is
found:

F = 3
µom

2

32πd

(
χ

χ + 1

)
. (19)

Now, taking F = mog, χ can be solved to obtain

χ = 2ζd4F

m2 − ζd4F
, (20)

where ζ = 32π
3µo

= 8×107

3 A2 N−1.

2.2. Model II: solution in a finite medium (cylinder)

Equations (15) and (16) are valid under some important assumptions [9]:

(i) The sample behaves as a semi-infinite medium.
(ii) The magnet behaves as a point-like dipole.

Nevertheless, the laboratory conditions do not always fulfil these requirements. In
particular, in the case of the determination of χ in liquid substances, the sample is a cylinder
(finite medium) and the magnet in most of the situations is different from the point-like dipole
behaviour. Because of these considerations, the physical model of equations (15) and (16) is
not always suitable for application. An improved model, applicable in this case, is the force
of one cylinder interacting magnetically with a dipole. The expression of this model has been
described in [9] that is

F = (µr − 1)µo
3m2

64π

[
1

z4
o

− 1

z4
1

− z2
o + R2/3(
z2

o + R2
)3 +

z2
1 + R2/3(
z2

1 + R2
)3

]
, (21)

here χ = µr − 1, zo is the distance from the magnet centre to the bottom of the cylinder
(sample), z1 is the distance from the magnet centre to the top of the liquid column and R is the
radius of the cylinder [3]. Equation (21) reduces to equation (19) for a semi-infinite sample,

that is, for z4
1 � z4

0 and R4 � z4
0

3 as it is expected.

3. Experimental methods and results

For diamagnetic and paramagnetic substances the magnetic susceptibility is given by

χ =
(

64π

3µo

)
mogz4

m2
, (22)
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Figure 2. Magnetic measurements fitted to the model of the magnetic moment.

where µo,mo, g, z and m are the magnetic permeability, the mass—measured in the scale,
the gravity acceleration, the distance from dipole’s centre to semi-infinite plane modelling the
sample, and the magnetic moment, respectively.

For performing the magnetic susceptibility measurements, by using the balance technique,
an analytical Mettler Toledo balance, with a precision of 0.01 mg, and a cylindrical magnet of
NdFeB with radius r = 0.25 cm and height h = 0.5 cm were used in this study. The magnet
was placed over a cylindrical support, which was on the balance plate, as shown in figure 1.
Over the magnet, placed as close as it was possible was a glass container (a Petri dish). It is
important to emphasize that the Petri dish and the magnet were not in contact.

Once the samples were fixed inside the glass container, the balance was turned on in order
to tare it and, according to equation (22), two cases can be observed:

(i) Paramagnetic samples. The magnet has a slight vertical displacement (usually
imperceptible for our sight). The fictitious mass recorded in the balance is negative
because the magnetic susceptibility χ is positive. This is consistent with the case of
ferromagnetic samples, in which we can expect a more perceptible motion.

(ii) Diamagnetic samples. The fictitious mass recorded in the balance is positive, implying
that χ is negative. The motion is, as in the case of paramagnetic samples, quite slight.

3.1. Magnetic characterization

The determination of the magnetic moment was made in two ways. In the first one, the
collected data of the magnetic field, measured along the z-axis, were fitted to equation (5), as
shown in figure 1. In the second way, the magnetic moment was obtained through the slope
of the curve dBz/dz versus Fz, where Bz is the z component of the magnetic field generated
by the small magnet and Fz is the magnetic force between both magnets, see the fitted data in
figure 3(b). In this case, the smallest magnet is used in order to perform this study; it is a disc
of radius 1.5 mm and 4 cm thickness. It has a magnetic intensity of 0.37 T in the vicinity of the
centre of its face. The measurements of the magnetic field, on both magnets, were repeated
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ten times, at 19 different distances (normal to the face of each disc). The magnetic sensor was
moved with a space resolution of 1 mm and using a Walker Scientific Inc. gaussmeter, which
has a precision of 50 µT. The averaged values of the magnetic field were plotted using the
software Microcal Origin 6.5 (Massachusetts, USA). The best fitting function was performed
taking into account a function with both the dipolar and quadrupolar parameters. Such a
function has the general expression

B = 1

z5
(z2m + c), (23)

here m and c are the magnetic dipolar and quadrupolar moments, respectively, and z is the
distance from the cylindrical face, where B was measured. A difference of two orders of
magnitude between m and c was determined, in the case of the smaller magnet. So, it implies
that the magnetic field behaves as a dipole on the z-axis (for distances larger than the diameter
of the magnet).

Once the magnetic moment of the magnet was measured, the recording of the magnetic
moment of our main magnet was performed. A magnetic dipole �m inside a non-uniform
magnetic field �B undergoes an external force �F , if it is assumed that mz‖B, then

Fz = m
d

dz
B, due to �B = k̂B. (24)

Thus measuring Fz for several distances from the magnet in the setup, it is possible to
estimate the magnetic moment of the larger magnet, in this case it was used to calculate values
on equation (19) for every single distance with the parameters m and c obtained before. The
magnetic moment of the main magnet was also estimated with the above procedure, see figures
3(a) and (b).

It is important to emphasize that equation (20) was valid for an ideal magnetic dipole, thus
to obtain the correct value of the magnetic moment, using the analytical scale, the separation
between the magnets must be greater than their radius. Therefore, the value obtained has a
5% difference according to the estimation carried out through the classic procedure.

3.2. Semi-infinite plane determination

The magnetic lines travelling from the north to the south pole are not straight, they are curved
coming from one of the faces of the magnet and going into the opposite face of the cylinder.
Therefore, in each circular plane over one face of the magnet, it will be possible to find magnetic
field lines travelling along the direction of the magnet axis. Thus, how is the magnetized sample
affected? In this case, the magnetization of a physical system is proportional to the geometry
of the sample. Our interactive model is based on the determination of the magnetic force
between a dipole and a finite or even better an infinite plane, but to obtain a plane which
contains all the magnetic field lines is not possible, indeed, in this case is unnecessary because
the Bx, By dipolar magnetic field components vanish very quickly, it is sufficient to find a
‘semi-infinite plane’ with Bz in only one sense, the sense of the magnetic moment of the
magnet. So that, the magnetic field was measured at six distances along the cylindrical axis in
which the measured substances showed the stronger magnetic interaction with the magnet, but
in each selected point, a circular map of Bz was additionally performed to several radii with
the purpose of finding the change of direction. In figure 4, the Bz measurements to several
radii is presented. The semi-infinite planes were determined in a range from 1 mm to 6 mm
over the cylindrical magnetic face and diameters from 1.3 cm to 3 cm were found according
the above criterion.
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Figure 3. Magnetic moment of the main magnet using: (a) the balance device and (b) the classic
procedure.

3.3. Validation of the measurement modality

In order to perform the validation of the magnetic susceptibility measurement modality,
the recordings of five samples weighing 1.00 g [13], were reproduced. Four of the five
samples were compressed with a pressure of 6 tons, so that, cylindrical tablets of diameter of
(18 ± 2) mm and heights of (2 ± 1) mm and the fifth sample, a liquid substance held in a small
glass bowl with the dimension above specified. The magnetic susceptibility measurements of
the five samples are shown in table 2. The first column from left to right indicates the chemical
substances; the second column reported the magnetic molar susceptibility χM , the third
column reported the molar mass of the substances, the fourth column reported the density
of the substances, the fifth column reported volumetric magnetic susceptibility χ , the sixth
and seventh columns contain the volumetric magnetic susceptibility χ measured with the
experimental setup proposed by using the model of the infinity in equation (19) and finite
plane in equation (21), respectively, the propagated uncertainty and the standard deviations
are included. All χM were transformed for its corresponding χ in accordance with table 1.
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Figure 4. Magnetic field intensity measured as a function of the radial length, for several fixed
positions in z, in order to determine the dimensions of the semi-infinite plane.

Table 2. Magnetic susceptibility of 1 g of different chemical substances.

Substance χM (cm3 mol−1) Wa (kg mol−1) ρ (kg m−3) χ × 10−5 χ inf × 10−5 χfinite × 10−5

MnSO4 · H2O 0.0142 0.169 2950 311 278 ± 20 291 ± 20
MnCl2 · 4H2O 0.0146 0.198 2010 186 214 ± 20 204 ± 20
CuSO4 · 5H2O 0.0015 0.250 2280 16.7 19 ± 2 18 ± 2
NiCl2 · 6H2O 0.00424 0.234 2377 54.1 51 ± 3 50 ± 3
H2O −1.297 × 10−5 0.018 1000 −0.91 −0.95 ± 0.08 −0.94 ± 0.08

3.4. Uncertainty propagation

For magnetic susceptibility measurements, several parameters were recorded as described
above, therefore the uncertainty propagation was calculated in the following manner taking
into consideration the following parameters:

(i) distance between the geometric centre of semi-infinite plane and the magnet’s geometric
centre,

(ii) the magnetic moment of the main magnet,
(iii) gravity acceleration and
(iv) the fictitious mass,(

�χ

χ

)2

= 16

(
�z

z

)2

+ 4

(
�m

m

)2

+

(
�m0

m0

)2

+

(
�g

g

)2

. (25)

It is important to point out that, the relative uncertainty of the mass and gravity acceleration
g = 9.8 m s−2, which are not important due to the relative uncertainty of the magnetic moment
m, so this quantity was determined in two different ways and separation distance z was larger,
indeed the relative uncertainties in the separation distance were also minimized by determining
them with a micrometer.

Moreover, averaging the magnetic moment measured gave m = 0.13 ± 0.05 A m2, and
the uncertainty propagation term is

4

(
�m

m

)2

= 2.4 × 10−4, (26)
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therefore, (
�χ

χ

)2

≈ 2.4 × 10−4, (27)

and thus the systematic uncertainties in the magnetic susceptibility were �χ ≈ 0.02χ , in
other words we have a systematic uncertainty of 2% of the susceptibility.

4. Discussion and conclusion

In this work, a description of the methodology and a detailed calibration of one experimental
setup for the measurement of the magnetic susceptibility were presented. In order to make
a good determination of the best semi-infinite magnetization plane, the magnetic moment of
the magnet and the relative uncertainty were necessary. Also a direct comparison between the
magnetic susceptibility with a finite and infinite model for the sample was evaluated, showing
differences from 5% to 10%.

So, it is considered an important and clear description of the methodology, such that it
should be taught and implemented in scientific and engineering experimental physics courses.
Also, it should be adopted as a working tool in the chemistry research centers for magnetic
sample characterization.
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