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Abstract
A basketball bounced on a stiff surface produces a characteristic loud thump,
followed by a high-pitched ringing. Describing the ball as an inextensible
but flexible membrane containing compressed air, I formulate an approximate
theory of the generation of these sounds and predict their amplitudes and
waveforms.

1. Introduction

A basketball bounced on a stiff surface, such as a thick concrete slab, emits a loud characteristic
‘thump’, followed by a high-pitched ringing. The sound is very different if the ball is bounced
on a more resilient or softer surface. These characteristic sounds are not heard when a solid
ball is bounced, and the bounce of a soft rubber ball of similar size produces the ringing but
not the thump.

Basketballs (and several other types of ball, including volleyballs, (American) footballs
and soccer (football outside the United States) balls) are inflated with air to an overpressure of
about half atmospheric pressure. This overpressure gives them their stiffness and resilience.
Beach balls and large balls meant for small children are also inflated, but to lower pressure. We
describe the outer skin of the ball (which is made of various combinations of rubber, leather
and nylon fibre, and various plastics in lower pressure balls) as an inextensible but perfectly
flexible membrane. Inextensibility is a fair approximation, as shown by the fact that these
balls expand only slightly upon inflation. Perfect flexibility is, at best, a rough approximation,
but is necessary to describe the mechanics of bounce without resorting to a numerical
elastodynamic treatment of the skin. In addition, we assume normal incidence and no
rotation.

It is important to distinguish the mechanics of a ball consisting of a thin (and hence
flexible) but nearly inextensible membrane pressurized by a gas contained within it from that
of a solid elastic ball. This paper is concerned with the former case; the filling gas has no
resistance to shear and the membrane has a great (nominally infinite) resistance to extension
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(surface tension). Many other sports balls (baseballs, handballs, golf balls, etc) are solid
objects whose mechanics are entirely different.

The phenomena described here are easily heard if one listens for them, and bouncing
balls are everywhere. While there is a literature on the mechanics of sport, including the paths
of balls, there have not been quantitative studies of the sounds emitted. The only published
work applicable to the subject of this paper is [1], and that tests only the frequency of the
ringing emission discussed in section 4. Unfortunately, experimental acoustics is difficult.
The obstacles include the quantitative calibration of the sensitivity of microphones (amplitude
standards are scarce), reverberation (to study a 40 Hz sound requires that there be no reflectors
or scatterers within 4 m of the source, and measurement of the spectrum of a broad-band
source centred at that frequency would require data extending to much lower frequencies, and
hence an unobstructed space several times larger), noise (environmental noise outdoors and
man-made noise indoors) and refraction by velocity fields and temperature gradients. My
attempts to collect useful data with available equipment failed for these reasons. Hence this
paper is limited to theoretical predictions. I hope that an experimentalist with better facilities
can test these predictions quantitatively, and without the bias inevitable when someone is
testing his own predictions.

2. Energetics

When an inflated ball strikes a stiff immovable flat surface, the portion of the ball pressing
against the surface loses its spherical shape. The remainder of the ball remains spherical
because inextensibility implies that latitude lines cannot stretch, and the volume is maximized
if they retain their pre-impact spherical geometry rather than telescoping. Maximization of the
volume also implies that the contacting portion of the ball, formerly a spherical cap, is pressed
flat against the rigid surface (figure 1). This requires a complex pattern of crumpling, which
we do not calculate. Because the skins of real balls have a finite thickness (about 3.5 mm
for basketballs), the approximation of an infinitely flexible membrane is not accurate, but we
make this approximation to permit a simple analytic treatment.

Flattening the end cap of a spherical ball, as shown in figure 1, requires a mechanical
work

W =
∫

p dV ≈ p�V = πp(ax2 − x3/3) ≈ πpax2, (1)

where x > 0 is the depth of flattening of the ball (the distance its centre has travelled normal
to the surface after first contact) and a is its unflattened radius. Taking x � a, we have
approximated p, the excess pressure inside the ball over ambient pressure (p is also known as
the gauge pressure), as a constant.

The mechanical work has the form of a simple harmonic oscillator potential

W = 1
2kx2 (2)

with spring constant

k = 2πpa. (3)

As a result, the motion of the ball when it is in contact with the surface is sinusoidal

x = x0 sin ωt (4)

for 0 � t � π/ω, with frequency

ω =
(

2πpa

M

)1/2

, (5)
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a

x
Flat rigid surface

Spherical inflated ball

Crumpled end cap

Figure 1. An inflated (pressurized) spherical ball made of an inextensible but flexible skin recoiling
from a stiff flat surface. The ball retains its spherical shape except where in contact with the surface.
The skin of the flattened spherical cap crumples to accommodate its reduced surface area.

where the mass M includes the mass of the skin of the ball, its contained air and the induced
mass of the surrounding airflow. To an excellent approximation for most inflated balls used in
sports, M is given by the mass of the solid (polymer) skin.

The ball remains in contact with the surface for a half-cycle of this oscillation, independent
of its velocity v0 = x0ω at impact. If dropped from a height h, then v0 = √

2gh, ignoring air
drag during its fall (for h = 1 m air drag introduces an error O(10%)).

3. Monopole emission—the ‘thump’

The changing volume of the ball produces a monopole source [2] of sound described by the
pressure field

prad(r, t) = ρ

2πr
Q′(t − r/c), (6)

where ρ is the density and c is the sound speed of the surrounding fluid, the volume flow rate

Q(t) = dV

dt
, (7)

and we have multiplied the standard result by a factor of 2 to allow for the fact that at the
surface of an infinite rigid slab sound is radiated into only 2π sterad. For a sphere with a small
flattened endcap (x � a)

V ≈ V0 − πax2. (8)

Using (4), (7) and (8), we obtain

prad(r, t) ≈ −ρav2
0

r
cos 2ω(t − r/c), (9)

for 0 � t − r/c � π/ω, and zero otherwise.
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Figure 2. The acoustic signal as a function of time (time normalized to the period 2π/ω). The
actual time dependence is one cycle of simple harmonic motion of angular frequency 2ω.

Standard basketballs have M ≈ 0.6 kg (600 g), p ≈ 5.5 × 104 Pa (5.5 × 105 dynes cm−2,
8 psi), and an internal radius a ≈ 0.114 m (11.4 cm), yielding ω ≈ 256 s−1. The acoustic
pulse described by (9) varies sinusoidally at an angular frequency 2ω, corresponding to 82 Hz,
as shown in figure 2. The origin of the double frequency is the quadratic dependence of V on
x (8).

The power spectrum of prad is shown in figure 3. The peak at a frequency ≈ ω results
from the peak in prad(t) at 1/4 of a cycle of period 2π/ω, as shown in figure 2. The zeros in
the power spectrum at higher integer multiples of ω result from the orthogonality relations of
trigonometric functions, and its peaks occur between them. Because the acoustic amplitude
is zero outside a short interval of length π/ω (half the simple harmonic period of the surface
rebound) its spectrum is broad, giving a ‘thump’ rather than narrow-band ringing. Attempting
to resolve the spectrum on shorter time scales would not be meaningful [3].

Taking v0 = 4.43 m s−1 (h = 1 m) and ρ = 1.19 kg m−3 (1.19 × 10−3 gm cm−3) (dry air
at 20 ◦C and standard pressure) yields a peak pressure amplitude of 0.89 Pa (8.9 dynes cm−2),
or 93 dB (referred to the standard 0 dB level of 2 × 10−5 Pa (2 × 10−4 dyne cm−2)) at a range
r = 3 m. This explains the surprising loudness of the ‘thump’.
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Figure 3. Power spectrum of the ‘thump’. The frequency is given in multiples of that of equation (5)
(41 Hz) and the power density is normalized to its peak value.

4. Dipole emission—the ‘ring’

In addition to the ‘thump’, a high-pitched ringing sound is also heard. When a softer ball
inflated to low pressure, such as a beach ball or a small child’s toy, is used, the ‘thump’ is less
audible because ω is very low, and the ringing is more striking. The frequency is that of the
lowest eigenmode of the oscillation of the air inside the ball.

On long time scales O(1/ω) it is possible to think of the force of contact with the slab as
transferring momentum to the ball as a whole. On the much shorter time scales characteristic
of the ball’s internal eigenmodes the internal response of the contained air must be considered.
The air acts as a nearly massless spring between the fixed slab and the more massive ball.
However, because the air has some mass and the frequencies of the internal modes are finite,
though large, some energy is coupled to them.

In the inextensible approximation, the skin of the ball may be considered to be a rigid
spherical shell after contact with the flat surface is broken. The governing equation for sound
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waves is

∇2p +
ω2

c2
p = 0, (10)

where ω is now the frequency of the acoustic wave. Azimuthally symmetric modes are given
(inside the ball) by

p(r, θ) = P�(cos θ)j�(kr), (11)

where the wave vector k ≡ ω/c. P� is the Legendre polynomial of order � and j� is the
spherical Bessel function of that order.

The value of k is determined by the boundary condition dj�(kr)/dr = 0 at r = a

because at the outer surface 0 = vr = ∂j�(kr)

∂r
P�(cos θ)/(iωρ). The boundary condition on

the parallel component of velocity is not applicable outside a boundary layer of thickness
O(

√
ν/ω1) ∼ 0.05 mm, where ν is the kinematic viscosity.
The lowest frequency mode is found for � = 1, corresponding to a mode in which all

the air moves in the same direction at any one time, and the diameter is approximately a
half-wavelength (ka = 2.082). The � = 0 mode has a velocity node at the origin as well as at
the surface, so the diameter is approximately a full wavelength (ka = 4.494). Its frequency is
roughly twice as high as that of the � = 1 mode. Hence the lowest mode frequency is

ω1 = 2.082c

a
. (12)

At a temperature of 20 ◦C (c = 3.43 × 102 m s−1) we find ω1 = 6.26 × 103 s−1 (997 Hz), in
agreement with [1].

It is possible to estimate the amplitude of the � = 1 mode. It is excited, in the inextensible
membrane approximation, by the force the rigid surface exerts on the air when the ball is in
contact with the surface. In this approximation, the force is transmitted through the flattened
portion of the skin to the contained air. A slowly varying (compared to the frequency ω)
pressure gradient in that air accelerates the skin (which contains nearly all the mass).

The momentum imparted to the oscillating air then equals the Fourier amplitude of the
applied force F(t) at the mode frequency ω1. The resulting momentum is

Pω1 =
∫ π/ω

0
F(t) exp iω1t dt =

∫ π/ω

0
pA(t) exp iω1t dt, (13)

where A(t) is the area of contact. Using A(t) = 2πax and equation (4) we find

Pω1 = 2πapx0

∫ π/ω

0
sin ωt exp iω1t dt. (14)

The integral is complex, but we are only interested in its modulus∣∣Pω1

∣∣ = 2πapx0
ω

ω2
1 − ω2

[2 (1 + cos πω1/ω)]1/2 . (15)

Because ω1 
 ω the factor in the square bracket is unknowable, but its root mean squared
value may be found by averaging over a full cycle of the cosine. The resultant root mean
squared momentum〈

Pω1

〉 = 2
√

2πapx0
ω

ω2
1 − ω2

. (16)

It is possible to integrate the velocity field over the interior of the ball to find the pressure
and velocity amplitude corresponding to Pω1 . Writing p1(r, θ) = a1P1(cos θ)j1(kr) we find

a1 = pax0

c2

ω4

ω2
1 − ω2

√
2(1 + cos πω1/ω)

3.463
. (17)
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We are more interested in the acoustic radiation by this mode, which can be obtained
directly from Pω1 . The oscillation of the air within the ball produces an opposite oscillation of
the ball, with velocity amplitude U1 = Pω1/M . The dipole approximation is not valid because
ka = 2.082 rather than ka � 1. However, Morse [2] tabulates numerical solutions for general
ka. The resulting radiation field

prad(r, t) = ρcU1

krD1
cos θ cos ω(t − r/c), (18)

where for ka = 2.082 the factor D1 = 0.531. For our previous parameters x0 = v0/ω =
17 mm, and we find 〈Pω1〉 = 0.0075 kg m s−1 (750 gm cm s−1), U1 = 0.0125 m s−1

(1.25 cm s−1) and the amplitude of prad at r = 3 m and θ = 0 is 0.187 Pa (1.87 dynes cm−2),
or 79 dB. This pressure amplitude is 14 dB below that of the low frequency ‘thump’ but is
readily audible.

In the approximation of an inextensible membrane the � = 0 mode is not excited, to lowest
order in the shape change during surface contact, because its velocity distribution does not
change the volume. Even were it excited, in this approximation it would not radiate because,
once surface contact is broken, the volume of the ball is constant and there is no monopole
radiation; higher multipoles are zero for this mode.

5. The inextensible approximation

The validity of the inextensible membrane approximation may be quantified by comparing the
frequency ω which describes the bounce to the frequency ωel of the ‘breathing’ mode in which
the skin oscillates, spherically symmetrically, about its equilibrium radius. The inextensible
approximation corresponds to the limit ωel/ω → ∞.

By force balance we see that inflating the ball to an overpressure P increases its radius by
an amount

δa = Pa2

hE
, (19)

where h is the skin’s thickness and E its Young’s modulus. Young’s moduli of rubber are
found [4] over a wide range, roughly 106–108 Pa (107–109 dynes cm−2), while that of leather
is typically [5] about 5 × 107 Pa (5 × 108 dynes cm−2). Basketballs generally are stiffened
with wound nylon filament with a modulus[4] of about 3 × 109 Pa (3 × 1010 dynes cm−2). If
P is measured with a pressure gauge, then measuring δa may be the most convenient means
of determining Eh.

The breathing mode oscillation is described by a potential energy

U = −P dV + 2 × 4πa2h
uσ

2
, (20)

where u is the strain and σ is the stress, and the first factor of 2 comes from the fact that the
skin is stretched along two orthogonal axes. For small strains u ≈ δa/a, σ ≈ Eδa/a and

U ≈ −4πa2Pδa + 4π(δa)2hE, (21)

yielding an effective spring constant kbreathe = ∂2U/∂δa2 = 8πhE. Then, using M =
4πa2hρskin,

ωel =
(

2E

ρskina2

)1/2

. (22)

The static inflation pressure drops out because the elastic response is assumed to be linear.
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The ratio of the breathing mode frequency to the bounce frequency is

ωel

ω
=

(
4Eh

Pa

)1/2

=
(

4a

δa

)1/2

. (23)

For an inextensible membrane E → ∞ and ωel/ω → ∞. The ratio a/δa is readily measured
as the ball is inflated. A rough measurement on a Spalding ‘NBA Indoor/Outdoor’ basketball
yielded δa/a = 0.009 for P = 5.5×104 Pa (5.5×105 dynes cm−2, 8 psi). The breathing mode
frequency ωel/2π is about 900 Hz (accidentally close to the ringing frequency), Eh = 7 ×
105 J m−2 (7 × 108 erg cm−2) and E = 2 × 108 Pa (2 × 109 erg cm−3). The stiffness is largely
provided by the nylon filaments.

The ratio ωel/ω = 21 is substantially, but not enormously, larger than unity, so
inextensibility should be a reasonable approximation. The infinite flexibility approximation
may not be accurate, but is not so readily quantified, and the actual dynamics at impact involves
such complications as friction with the surface.

The most important consequence of the breakdown of the inextensibility approximation
is that impact excites the breathing mode. After the ball breaks contact with the surface it
continues to radiate. The rubbery materials of which basketballs are made have large loss
coefficients, so this oscillation and radiation damp in about a single cycle.

In the opposite (extensible membrane, incompressible filling fluid) approximation, the
volume is not changed at impact and there is neither ‘thump’ nor ‘ring’. This limit is applicable
to a water-filled latex balloon, for which there are only very low frequency volume-conserving
elastic oscillations analogous to the quadrupole (and higher multipole) oscillations of liquid
drops. An air-filled latex balloon is an intermediate case, and some ‘thump’ is heard. There
is no ringing because the low impedance membrane permits internal motions to couple to the
surrounding air; there are no internal standing wave modes.
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