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Abstract
A simple, easy to build electronic circuit consisting of an amplifying chain
followed by a state-variable bandpass filter has been used to measure the
thermal noise produced by a resistor. Using Johnson’s theory for thermal
noise, Boltzmann’s constant could be derived with an accuracy of 1.4% of its
accepted value. This simple instrument can be very useful for modern physics
laboratories due to its low cost and use of standard instrumentation.

1. Introduction

Thermal noise is generated by any material at a temperature above absolute zero. Noise
voltages may be specified by their amplitude distribution over their spectral bandwidth. One
of the most common kinds of noise is the band-limited, white, Gaussian noise, which is a
signal with equal power per unit frequency (Hz) over a certain band of frequencies and with
a Gaussian distribution of amplitudes. This kind of noise is generated by a resistor (Johnson
noise), and it affects sensitive measurements of all kinds. The link between the macroscopic
parameters accessible to measurement and the microscopic phenomena occuring in the resistor
was provided by Johnson in 1928 [1]. Briefly, Johnson showed that the average of the square
of the voltage measured across the terminals of a conductor is proportional to its resistance
and temperature, and that it does not depend on the material of which the conductor is made
nor on any other physical or chemical properties. Nyquist’s theory, published in the same
year [2], provided a rigorous theoretical explanation based on the principles of statistical
thermodynamics.

There already exist several experimental layouts to measure Boltzmann’s constant from
the measurement of the thermal noise of a resistor [3–5]. However, these setups use rather
expensive instrumentation, and some of them are intended for precise thermometry. Ericson
[6] has reported the design of a simple system to measure Boltzmann’s constant, using a
high frequency amplifier (subject to more noise problems) and a passive bandpass filter. No
reference is made in this paper about the particular value obtained for Boltzmann’s constant.
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Figure 1. Diagram of the electronic circuit for the measurement of Johnson’s noise, produced by
the resistor R. All operational amplifiers are LT1024.

Rather, it is only claimed that it differs from the accurate value only by a few per cent. This
paper reports the design of a simple electronic circuit that is capable of providing useful signals
out of which Boltzmann’s constant can be derived with an uncertainty of 1.4%, a value which
is considered good from the point of view of an experiment for undergraduates.

Even though electrons are in motion in a resistor, there is no net flow of current across its
terminals, and hence the average voltage is zero:

〈V (t)〉 = 0. (1)

However, thermal fluctuations do generate a finite voltage as a function of time, that is,
V (t) �= 0, and hence the variance of V(t) is finite, that is

σ 2
V = 〈(V − 〈V 〉)2〉 = 〈V 2〉 − 〈V 〉2 = 〈V 2〉 �= 0, (2)

and this quantity, accessible to measurement, is termed the thermal Johnson voltage.
If a resistor R is connected across the input terminals of an amplifier of gain g(ω), where ω

is the angular frequency, and it is tuned so as to pass angular frequencies over a predetermined
range, then the fluctuating current I(t) would give rise to a variation of the voltage V(t) across
the terminals of the amplifier to which the resistor is connected, as is shown in figure 1. The
elementary contribution dV2 to the total mean square voltage at the output of the bandpass
filter in a differential frequency interval is [7]

dV 2 = [g(ω)]2 dV ′2, (3)

where V ′2 is the voltage measured across the resistor (without any amplification), and g(ω) =
Vout(ω)/Vin(ω) is the overall gain of the amplifier and bandpass filter combination as a function
of frequency. If V(t) is expressed in terms of Fourier components, then one can write [7]

〈V 2〉 =
∫ ∞

0
[g(ω)]2f (ω) dω, (4)

where f (ω) is the spectral density of V(t). In deriving f (ω), Nyquist considered that the
resistor could be viewed as a simple, one-dimensional case of blackbody radiation, and hence
this gives [3]

f (ω) = 2

π

h̄ω

eβh̄ω − 1
R, (5)

where h̄ = h/2π (h is Planck’s constant) and β = 1/kT (where k is Boltzmann’s constant and
T is the temperature). Thus we have from equation (4)

〈V 2〉 = 2R

π

∫ ∞

0
[g(ω)]2 h̄ω

eβh̄ω − 1
dω. (6)
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Since at room temperature kT � h̄ω, and with ω = 2πν where ν is the natural frequency, one
obtains

〈V 2〉 = 4kT R

∫ ∞

0
[g(ν)]2 dν. (7)

Hence, Johnson’s voltage at room temperatures is given by [2]

〈V 2〉 = 4kT R S, (8)

where S is the gain factor, defined as

S ≡
∫ ∞

0
g2(ν) dν. (9)

The S factor is due to the need of amplifying the noise signal generated by the resistor, since it
itself is very small, and hence inaccessible to direct measurement. We shall use equation (8)
to derive k from the measurement of 〈V2〉.

2. Measurement of Johnson’s noise

A diagram of the measurement setup is shown in figure 1. A resistor of value R is closely
connected to the input terminals of a low-noise amplifier of voltage gain 1000; the amplified
signal is then applied to an active bandpass filter with a voltage gain 10 over its bandpass, and
measured from a simple digital oscilloscope of 40 MHz bandwidth. The amplifier module was
built out of a cascade of three non-inverting amplifiers, each of gain 10; the very low-noise
operational amplifier LT1024 was used throughout. The reason underlying the choice of three
amplifying stages stems on the need to keep a reasonable bandwidth, while not generating
a substantial noise. The overall bandwidth of the amplifying system is DC–200 kHz, which
embraces perfectly the bandwidth of the bandpass filter. All operational amplifiers are biased
by a dual, well-regulated, very low noise supply (±15 V). A couple of 10 μF, tantalum
capacitors should be connected to the ±15V feeding lines of the printed circuit board.

For the bandpass filter, we have selected a state-variable active filter as described in [8].
This filter was designed for a bandpass gain of G=10, with low and high cutoff frequencies
of ν l = 1 kHz and νh = 11 kHz, respectively, both defined to occur after a 3 dB decay from
the bandpass gain.

The quality factor of the circuit is defined by

Q = νc

νh − νl

. (10)

Choosing a mid-band pass frequency of νc = 6 kHz, we obtain Q = 0.6, for a bandwidth of
νh − νl = 10 kHz. RF is used for setting the centre frequency, while RQ and RG define both
Q and the band-centre gain [8]. Thus, one can build a tunable-frequency, constant-Q filter by
simply adjusting RF. The resistors are calculated from the following relations [8]:

RF = 5.03 × 107

νc

�, (11)

RQ = 1.0 × 105

(3.48Q + G − 1)
�, (12)

RG = 3.16 × 104Q

G
�. (13)

The S factor was obtained by applying a small sinewave signal to the combination of the
amplifier and bandpass filter. Care was taken to apply a signal small enough so as to ensure



678 J C Rodrı́guez-Luna and J de Urquijo

103 104 105
102

103

104

G
ai

n
   

 G

Frequency       (Hz)

Figure 2. The measured, overall gain of the amplifier + bandpass filter combination as a function
of frequency.

that the amplifier was operating in its linear region over the whole bandwidth of interest
(DC–200 kHz), so that signal distortion was avoided. A simple voltage divider can be placed
between the signal generator output and the amplifier input to accomplish this. A simple
oscilloscope with a 20 MHz bandwidth or more may be used.

Several sources of noise in the environment may affect the measurement of Johnson’s
signals. Some of these spurious signals may arise from electrical equipment such as motors
and power switches, and also from radiofrequency sources. Thus, it is essential to shield the
whole electronic circuit from any of these sources. This was accomplished by placing the
whole circuit inside a metallic enclosure, which can simply be a cardboard box wrapped with
aluminium foil. It is essential to connect this box to a good ground. All connecting cables
should also be wrapped with aluminium foil, and the choice of a single grounding point for
all cables is essential to avoid induction loops.

The ratio between the output and input amplitudes is the gain g(ν), and its curve is shown
in figure 2. This gain curve was measured by applying a small signal (∼1 mV) from a sinewave
generator.

The S term given by equation (9) was evaluated from the numerical integration of the gain
curve given in figure 2, rendering a value of S = 1.66 × 1012 Hz.

3. Measurement of Boltzmann’s constant

The 〈V2〉 values of the above circuit were measured for a number of resistors with values
between 4.6 k� and 11.8 k�, as shown in figure 3. Theoretically, a straight line of slope 4kTS
should be expected. The solid line connecting the experimental points represents the linear fit
to 〈V2〉 with a slope

〈V 2〉
R

= (2.78 ± 0.06) × 10−8 V 2 �−1, (14)

and an intercept to the ordinate axis of value 4.0 × 10−4V 2. It is important to note that this
value is Johnson’s noise due to the electronic circuit only when its input terminals are short
circuited. Thus we confirm that equation (8) is valid independently of the nature of the resistor,
since the intercept falls within the linear fit.
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Figure 3. The variance of the output voltage of the whole measuring circuit as a function of the
resistor connected across its input terminals.

Considering the temperature at which the measurements were performed (T = 298 ±
0.05 K) and using equations (8) and (14), the value of Boltzmann’s constant results in

k = 〈V 2〉/R
4T S

= (1.40 ± 0.03) × 10−23 J K−1. (15)

This value is only 1.4% higher than the accepted value of k = 1.38066 × 10−23 J K−1.

4. Conclusions

We have presented a simple, inexpensive circuit to determine Boltzmann’s constant from
the measurement of Johnson’s noise from a resistor. The setup is easy to build, requires
non-expensive instrumentation for the measurement of the noise voltage, and will provide the
student with a direct, sound insight of thermal noise, its measurement and the derivation of
Boltzmann’s constant.
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