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Abstract
We present a physically interesting toy, which is easily constructed and
operated—the so-called buzzer. In spite of its simplicity, its physical analysis
turns out to be rather complex. Thus, it comes as no surprise that most of its
users are not familiar with the underlying physical mechanism. In this paper
we propose a physical model which allows for the qualitative and quantitative
description of the fundamental physical properties of the buzzer and report on
the good agreement between theoretical and experimental data. The model is
designed to give a basis for further simplification.

1. Introduction

Although toys are not physical objects per se, many of them may play an important role in the
teaching of physics. Unlike physical instruments and apparatus, which are exclusively made
to demonstrate physical laws, toys like other objects of the everyday-life world do not contain
the physical aspects for direct reading. The physical aspects have to be wrested from them and
require creative activities which are in some respects similar to real physical research [1]. This
may be one reason why many famous physicists had been attracted by physical toys and toying
[2]. Although toys are familiar, simple in operation and sometimes even in construction, the
physical description can be rather challenging. In many cases the motivation for a physical
engagement of the students comes to an early end because the physical description of even
simple looking toys turns out to be too complicated. Therefore, physical approaches of at least
the well-known and classical toys should be available.

The main purpose of this paper is to present a physical description of a classical and
simple looking toy which—as far as we know—is lacking until now. This toy has many names
amongst which ‘buzzer’ is probably the most general. It is also known as ‘buzz’, ‘whizzer’,
‘magic wheel’, ‘saw-mill’, ‘bullroarer’ or simply ‘button-on-a-string’. The buzzer is easily
constructed in a few minutes and consists of an object that usually has two holes on each side
of its centre of gravity. Through these a cord is fed, one at a time. The ends of the cord are
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Figure 1. Already in the Middle Ages ‘buzz bones’ were very popular as a toy (drawing: Ewa
Rehwald).

Figure 2. The buzzer can be constructed very quickly from a cord loop and a button, as has been
done since ages by the children.

then tied together in a way which allows for a finger to be put through the loops on both sides
(figure 1).

The cord has then to be wound up by a whirling motion of one’s hands. If a tension is
applied to the ends of the hence twisted cord, it will unwind and, depending on the quantity of
the inertial moment of the rotation, rewind in the opposite direction. By applying and releasing
tension in an appropriate rhythm, this process, which is accompanied by the typical buzzing
or humming sound, can be repeated indefinitely. According to the Hornbostel–Sachs scheme
of musical instrument classification [4] and in view of its eponymous acoustic properties, this
extraordinary toy could also be classified as a ‘free aerophone’, as well.

It is however not necessary to use a medieval ‘buzz bone’ as a rotator to achieve the
intended effect. A big button, as the one shown in figure 2, is more suitable, anyway, for it is
well balanced and already equipped with the necessary holes.

In order to give a general physical approach of the buzzer, the level of readership is
designed for graduate students and general physicists and could serve as a basis for further
simplification for lower levels of physical instruction.
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Figure 3. Experimental setup: (a) buzzer with a chopper wheel, (b) driving motor, (c) tilting lever
with return spring, (d) dynamometer, (e) light barrier and (f) travel sensor.

Despite its simple makeup, the quantitative analysis of the buzzer’s underlying physical
mechanism turns out to be very complex. Unsurprisingly, a physical model appropriate for
high-school and college physics does not exist. The main objective of our investigations was
thus the development and experimental verification of a quantitative model. Albeit its innately
mathematical nature, the latter may serve as a basis for a more general, qualitative analysis,
as well.

2. The buzzer on the rack

The remarkable behaviour of a buzzer largely depends on its operator’s rhythmical application
of tension to its cord. Experienced ‘players’ know implicitly that one may control the
revolutions per cycle and the angular velocity of the rotator by appropriately matching the
evolution of the tractive force to the pulling frequency.

In order to study the toy’s behaviour independently of individual influences, it was yet
necessary to construct a device which applies and releases the tension in a reproducible and
easily quantifiable way. For this purpose, one end of the buzzer’s cord was tightly connected
to a dynamometer, while the other end was fixed to a tilting lever, which could be moved
back and forth periodically by means of a motorized driving mechanism. The resultant linear
displacement was registered by a travel sensor. The rotator, itself, was attached to a light
chopper wheel, whose row of slots interrupted the beam of a light barrier, so that the angle
of rotation and the angular velocity could be determined based on the measured number and
frequency of interruptions. The experimental setup shown in figure 3 needed an initial transient
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Figure 4. The angular velocity ϕ̇ and angle of rotation ϕ versus time.

period of about 10 s after which the ‘amplitude’ of the angle of rotation ϕ became steady and
the oscillation period depended exclusively on the constant excitation frequency of the driving
device.

The time behaviour of the angle of rotation ϕ and the angular velocity ϕ̇ of the buzzer
disc at steady state is shown in figure 4. In this case the inertial moment of the buzzer disc
was I = 2.48 × 10−5 Nms and the maximum span length of the cord amounted to 70 cm.
With these parameters the buzzer could be operated with excitation frequencies between
0.18 Hz and 0.25 Hz.

The time series is at least in principle infinite. In order to get a more compact representation
of the system’s final behaviour (after transients have vanished), it is convenient to plot the
variables of the system as coordinates in the state space (also called phase state) [3]. A very
simple example is the phase state of a harmonic oscillation where the angular velocity is plotted
against the angle. In this case the trajectory is just a circle. For the buzzer the angular velocity
ϕ̇(t), the tractive force F(t) applied to the cord and the distance z(t) travelled in the course
of its elongation are used as coordinates. The respective vector triple traces a characteristic
orbit. Three projections of an orbit obtained from the measured data are shown in figure 5.
About four cycles have been plotted showing that the behaviour of the buzzer is nearly exactly
repeated in each cycle. Only minor deviations indicate that a real system is always exposed to
random perturbations.

The buzzer may be perceived as a dissipative system: the energy input from outside is
dissipated by friction within the system. The area framed by the projection of the orbit F(z)

corresponds to the energy transferred into the system, whereas the kinetic energy contained in
the system may be inferred from the corresponding values of ϕ̇. The kinetic energy vanishes
if ϕ̇ = 0, i.e. when the absolute value of the angle of rotation cycles its maximum.

3. A physical model of the buzzer

By adopting some simplifying assumptions, a rather simple equation of motion may be derived.
In order to reduce the complexity, we initially neglect the weight of the buzzer. This parallels
the assumption that it was driven in zero gravity. In this case, the axis of rotation coincides
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Figure 5. State space spanned by ϕ̇, F and z. The trajectory determined by the measured data (not
plotted here) has been projected on three planes.

Figure 6. The trajectory of the variation of the angle of rotation against the displacement (measured
values). Again about four cycles have been plotted.

with the line of action of the tractive forces (figure 7). Furthermore, it is assumed that,
in the untwisted state, each of the two cords may be represented by a thin cylinder with a
constant cross section. Finally, both the cord’s resistance to being twisted and its elasticity are
preliminarily neglected, as well.

The total length of the cord amounts to 4l, so that the pair of cords has a maximum span
length of about 2l. The radius of the circular cross section of a single cord is r. We further
assume that the tractive force F causes a tension which is uniformly distributed across the
entire cross section of each cord, so that F attaches at its geometric centre. For simplicity, we
further assume that the total tractive force is transmitted by the central filament of each cord
and that the material surrounding this filament functions as a simple filler. Consequently, a
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Figure 7. If the weight of the buzzer disc is neglected, the axis of rotation will coincide with the
line of action of the tractive force.

Figure 8. Assuming that the force is transmitted exclusively by the central filament, the latter
spirals on a cylinder with a diameter 2r .

twisting of the pair of cords corresponds to a spiral movement of the filament on a cylinder
with radius r as it is illustrated on the right-hand side of figure 8.

By means of this simplified representation it is possible to give a straightforward
quantitative description of the torque exerted on the buzzer. By twisting the pair of cords,
each segment of the central filament is distorted with respect to the axis of rotation by the
helix angle ϑ shown in figure 9. If, now, a couple of forces ±F act on the pair of cords in
the direction of the axis of rotation, each segment of the central filament will be balanced by
the respective forces ±Fs .

The orientation of ±Fs deviates from the direction of the axis of rotation by the helix
angle ϑ . The component Ft orthogonal to the axis is directed tangentially to the surface of
the cylinder around which the central filament is wound. Thus, at the upper end of the coil,
the pair of filaments must be held in a twisted state by a couple of tangential forces ±Ft
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Figure 9. Equilibrium of forces at a segment of the force transmitting filament.

Figure 10. The direction in which the twisted part of the twin cord is unwrapped coincides with
the line of action of the tractive force Fs .

(figure 10), which corresponds to a torque of 2rFt , where r denotes the distance of the
tangential forces from the axis of rotation.

As can be derived directly from the geometric relations in figure 10, Ft = Fa tan(ϑ). The
component Fa being parallel to the axis of rotation transmits half of the axial component of
the tractive force per filament. With the axial force being Fa = F/2, the tangential force may
be expressed by Ft = F tan(ϑ)/2. The insertion of this result into the previously derived term
for the torque delivers rF tan(ϑ). If one takes into account that a torque is exerted in the same
direction by identical coils on both sides of the disc, the total torque equals

M = 2rF tan(ϑ). (1)
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Figure 11. An inclined plane wrapped around a cylinder serves as a model for the formation of the
helix of a filament within the twisted section of a pair of cords. With each rotation of the cylinder
the rotation angle ϕ increases by 2π . At the same time, the side opposite to the helix angle ϑ

increases by 2πr .

Obviously, the torque depends on the radius r of the cross section of the cord, the tractive force
F and the degree of twisting expressed by the helix angle ϑ .

With the last term in (1) being proportional to the degree of twisting and thus the number
of windings, tan ϑ from equation (1) may be expressed as a function of the angle of rotation
ϕ (in unit radians). To illustrate the geometrical relations of these quantities, we consider the
spiral of a filament as a spatial curve, which arises from wrapping a rectangular triangle (made
out of paper) around a cylindrical pencil (figure 11). The hypotenuse of the triangle would
then have the length of the twisted part of the cord.

In the geometry of the buzzer, as is shown in figure 10, the distance from the buzzer’s
disc to the right end of the twisted cord k constitutes one leg of the rectangular triangle with
a hypotenuse of length l and a second leg of length p. The distance from the centre of the
buzzer’s disc to the drill hole through which the cord is fed is q.

The unwrapping of the helix delivers an inclined plane, as the one shown in figure 11.
The distance rϕ may be found similarly by unwrapping the twisted part of the twin cord in
figure 10. In order to account for the changing sign of ϕ, the length of p must be determined
from

p = sign(ϕ)q + rϕ. (2)

With p being the side opposite to the helix angle ϑ and k being the adjacent side (figure 10),
we derive the relation

tan ϑ = p/k, (3)

where k may be determined by the means of the Pythagorean theorem: k =
√

l2 − p2.

With (2) and (3) all quantities which are necessary to determine the torque exerted on the
disc of the buzzer have been found. When the buzzer is operated, however, different frictional
forces give rise to an additional torque MR , which may be taken into account by assuming
MR ∝ ϕ̇2.

If the inertial moment of the disc about the axis of rotation is denoted by I, the equation
of motion reads I ϕ̈ = −M − MR , or by substituting equation (1),

I ϕ̈ = −2rF tan ϑ − MR. (4)

After the insertion of the corresponding terms from equations (2)–(4), it finally adopts the
explicit form

I ϕ̈ = 2rF
sign(ϕ)q + rϕ

√
l2 − (sign(ϕ)q + rϕ)2

. (5)
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Figure 12. Relation between angle of rotation ϕ and displacement z (model calculation for a
non-flexible cord).

In order to calculate the behaviour of a specific buzzer, we still have to determine the time
dependence of the tractive force F(t). Similar to a crank and slider mechanism, the rotational
motion of the crank of the driving motor is converted into a linear motion. Since both the
horizontal and vertical displacements of the crank contribute to the linear motion, the increase
of the tractive force at the beginning and the decrease at the end of a cycle are much steeper
than it would be in the case of a sinusoidal motion. The assumption

F(t) = A · |sin(ωt + τ)|3 + Fmin (6)

accounts very well for this special behaviour and delivers experimentally verifiable results.
Thus, the tractive force F(t) has a minimal value of Fmin and it oscillates periodically with
amplitude A and a period of T = 2π/ω.

4. Results of the model calculation

Figure 12 shows the orbits of the calculated relation between the angle of rotation ϕ and the
traction distance z.

In our calculations the maximum of the traction distance coincides with the maximum of
the span length of the cord when ϕ = 0. Accordingly, at the minimal value of the traction
distance, the angle ϕ cycles its maximal value. The difference between the maximal and the
minimal length of the cord is about 3 cm (see figure 12).

Due to our simplification by restricting the calculations to a non-flexible cord (figure 12),
we get a slight deviation from the experimental measurements figure 6.

After the implementation of the experimentally investigated parameters into our model,
the simulated behaviour of the buzzer (figure 13) can be compared with the real behaviour as
shown in figure 5. In both cases the orbit within the state space spanned by the coordinates
ϕ̇, F and z has been plotted after the initial transients have vanished. First of all, it arises that
the orbits have the same topology and show roughly the same behaviour. The recognizable
differences between figures 5 and 13 are because of the simplification made in simulation
that the cord is not flexible. Therefore, the force F develops more uniformly during the
displacement z which leads to a more rounded, nearly circular form of the projected orbit
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Figure 13. Space of states spanned by ϕ̇, F and z. The orbit projected on the three planes has
been determined by the model calculation for the buzzer, whose experimentally measured orbit is
shown in figure 5.

on the F–z plane. For the same reason in the ϕ̇–z plane it can be seen that the rotation
stops (ϕ̇ = 0) when the displacement z is minimal, i.e. the cord is maximally drilled
(figure 13). In contrast, in the real case the disc rotates further when z is minimal (which only
can happen, if the elastic cord is stretched) and does not stop before the displacement of the
cord increases.

The accordance between the experiment and model could be improved by including the
elasticity. But then the model would become so complicated that the gain of accordance is
too disproportionate to our intention to make the description at the same time as simple and
as correct as possible.
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