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Abstract
A system of two magnets hung from two vertical springs and oscillating
in the hollows of a pair of coils connected in series is a new, interesting
and useful example of coupled oscillators. The electromagnetically coupled
oscillations of these oscillators are experimentally and theoretically studied.
Its coupling is electromagnetic instead of mechanical, and easily adjustable
by the experimenter. The coupling of this new coupled oscillator system is
determined by the currents that the magnets induce in two coils connected in
series, one to each magnet. It is an interesting case of mechanical oscillators
with field-driven coupling, instead of mechanical coupling. Moreover, it is
both a coupled and a damped oscillating system that lends itself to a detailed
study and presentation of many properties and phenomena of such a system
of oscillators. A set of experiments that validates the theoretical model of the
oscillators is presented and discussed.

1. Introduction

Ubiquitous in nature and in the man-made world, coupled oscillators are systems that deserve
the amount of time that is devoted to them in physics, engineering and mathematics. Their
mathematical representations are ideal examples of coupled differential equations to be treated
using linear algebra and differential calculus. The familiar coupled oscillator systems are
coupled by either linear deformations or torsions of springs, or as in the case of coupled
LC circuits by magnetic flux. The canonical example consists of two pendula horizontally
connected with a weak spring whose relaxed length is equal to the distance between the bobs
of the pendula [1, 2]. Three aligned mass-points interconnected by two collinear springs is
a useful model for studying the longitudinal oscillations of molecules such as CO2 [1, 3].
Several coupled mechanical oscillators systems, which incorporate magnets and coils, have
been recently described. For instance, the oscillations of two nearly identical resonant series
LC circuits were studied by Hansen et al [4]. In that work two nearly identical coaxial coils
were placed nearby, one of them was fixed and the other movable along a common axis, and
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Figure 1. Two ferrite magnets (black cylinders above the white coils, left and right) hang, with
same poles down, from two long vertical springs (one on each side) and vertically oscillate in the
hollows of the coils. The magnets hanging inside the coils are connected in series, so that the
induced currents in them oppose. The oscilloscope screen (inset) shows the magnets’ elongations.

(This figure is in colour only in the electronic version)

features of that oscillating system such as the resonance π -phase jumps were studied. Two
clamped steel blades, with a strong magnet attached to the free end of each blade, were set
in low-frequency coupled oscillations by McCarthy [5]; the oscillations were forced with a
driving coil, and a test coil was used to demonstrate effects and concepts such as transients,
resonances and the eigen-modes.

Coupled oscillating systems also appear in the quantum world, and some have remarkable
properties as in the case of the coupling of the current oscillations of a biased Josephson
junction with an external microwave field [6]. At a more sophisticated level, we can mention
the coupled electro-magnetic oscillation of two squeezed states of laser beams coherently
generated at a nonlinear crystal (optical degenerate parametric oscillator), which is finding
important applications in the field of quantum information.

In many mechanically coupled oscillators the variable of the motion equations is either
a linear deformation (elongation) or a torsion angle. Here we introduce the new case of
two vertical mass-spring oscillators coupled by two electrically conducting coils connected
in series (figure 1) not previously found in the literature. An analogous dissipative system
of mechanical, in fact torsional, coupled oscillators, is described by Bacon [7] in which the
coupling is mechanical, rather than electromagnetic, and provided by a viscous fluid in contact
with the oscillators.

In figure 1, the oscillator bobs are two identical magnets oscillating inside, or just above
identical coils placed below them, one for each magnet (see also the schematic drawing in
figure 5). The magnets induce electro-motive forces in the coils, and the coupling between the
two mechanical oscillators is achieved by the electrical current that the motion of the magnets
induces in the coils below them. This variable current produces a magnetic force that forces
the spring-magnets into oscillation. This new oscillating system is a low-frequency one, and
interesting in many senses. To start with, the nature of its coupling is not mechanical but
electromagnetic since it is determined by the induced currents in the series circuit. It is a
non-contact but rather a field-driven coupling, a not so common case. Secondly, the relevant
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Figure 2. A conducting ring of radius a moves with velocity v along the symmetry axis z of the
magnetic field B of a magnet. The changing magnetic flux induces an e.m.f. εi in the ring, and an
opposing magnetic force F acts on it. Bρ denotes the radial component of the magnetic field.

variable of the coupling is not a linear or a torsion elongation but instead the speed—the
derivative of the elongation variable—of the magnets oscillating in the coils. These features
are good arguments to consider this oscillating system for investigation, and as shown below
the physics of this oscillating system is ideal for lecture presentation, better yet the system
lends itself to an open-ended senior undergraduate laboratory project. Below we present a
theoretical model of this new oscillating system and the experiments that validate the model.
This work is organized as follows. In section 2 the theoretical model is presented. Section 3
is devoted to the description of the simple experimental setup that allows us to do the necessary
experiments and section 4 to the experiments themselves. First we present two preliminary
experiments to gather information on the magnitudes of the magnetic force on a magnet
oscillating inside a coil, and its dependence with respect to the number of turns in the coil.
Then, two cases of the many possible experiments with our electromagnetically coupled
oscillators are studied, both theoretically and experimentally. Finally section 5 is devoted to
the discussion and conclusions of our model and experiments. Three appendices are given
that are devoted to particular features of the two electromagnetically coupled oscillators, and
further illustrate their electrical and mechanical properties.

2. Mathematical model of the interaction between a coil and a single oscillating
magnet

We begin deriving an expression for the magnetic interaction force between a single magnet
and a coil of N-turns. We also need an expression for the electric current in the series circuit
of the two coils, the coupling variable. As shown below, a theoretical model for our physical
system can be obtained under rather modest assumptions, and taking advantage of the mirror
symmetry (figure 1) of the two oscillating spring-magnets. We begin deriving the magnetic
force.

2.1. Interaction force between a single-turn coil and a moving magnet

A single conducting loop interacting with a moving magnet is a known problem in electro-
magnetism [8, 9]. In figure 2 a conducting ring of radius a moves with axial velocity v towards
a magnet; the changing magnetic flux � of the magnetic field B induces in this ring an induced
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electromotive force (i.e.m.f.) εi given by

εi =
∮

(v × B) · dl = 2πavBρ, (1)

where v is the speed of the magnet and Bρ is the radial component of the field at the axial
distance z from the magnet. If μ is the magnet dipole moment, the radial component Bρ can
be written using the well-known magnetic dipole approximation [8, 9] as

Bρ = 3μza

(a2 + z2)5/2
. (2)

This simple relation is very convenient for the development of our model (later we will
introduce a better approximation, although not so simple, for this radial component of the
magnetic field).

If D is the diameter of the conducting ring and σ its electrical conductivity, then the
electrical resistance R of the conducting ring is given by

R = 2πa

σ
(

π
4

)
D2

. (3)

We can now write an expression for the magnitude F of the magnetic force acting on the ring
at the vertical distance z from the magnet. Such force is (by Newton’s third law) the reaction
force on the magnet:

F =
∫

i �dl × �B · ẑ = i2πaBρ = (2πaBρ)
2v

R
. (4)

As expected, because of Faraday’s induction law, the force F is proportional to the relative
speed v of the ring. After placing Bρ from equation (2) into equation (4), the magnetic force
may be written as

F = 36π2μ2z2a4v

(a2 + z2)5R
(5)

for a single-turn coil.
This interaction force is zero for z = 0 and it reaches a maximum for the maximum value

of the radial component Bρ of the field. This component may be easily shown to reach a
maximum when the conducting ring is at the distance z = ±a/2 from the magnet, and so
does the magnetic force F. It may also be inferred from equation (5) that this force rapidly
decreases for z � a, i.e. when the coil is far away from the ring.

2.2. Interaction force between an N-turns coil and a moving magnet

Consider now that we replace the single ring in figure 2 by an N-turns coil of length L. The
number of turns in an element of coil of length dz is dN = (N/L) dz. To find the new expression
for the magnetic force exerted on the magnet by this N-turns coil, we use the results for the
single-turn coil. We simply need to integrate equation (1) along the z-axis. The induced
e.m.f. εi generated in the N-turns of wire connected in series is given by the integral (see
equation (1) above)

εi =
∫

2πavBρ dN =
∫ b+L

b

2πa
3zav

(a2 + z2)5/2

N dz

L
, (6)

where b is the distance from the coil top to the mid-plane of the magnet, when at its equilibrium
position (figure 3). After integration we get

εi = N

L
(2πa)

(−1)μav(
a2 + z2

)3/2

∣∣∣∣∣
z=b+L

z=b

, (7)
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Figure 3. Scheme of a single magnet vertically oscillating in the hollow of a coil. The magnet is
shown at its equilibrium position (dashed line). b is the distance from the centre of the magnet to
the top of the coil, L is the coil length. The origin of vertical coordinates z is at the centre of the
magnet.

which after evaluation at the integration limits gives

εi = N

L
(2πa2)μv

[
1

(a2 + b2)3/2
− 1

[a2 + (b + L)2]3/2

]
, (8)

which is valid for an N-turns coil.
Using a well-known Faraday expression for the magnetic force (as in equation (4)) between

a conductor and a magnet [10], the force dF exerted on the magnet by a coil of infinitesimal
length dz carrying a current di = (Ni/L) dz is given by

dF = di (2πa) Bρ =
(

Ni

L

)
(2πa)

3μaz dz(
a2 + z2

)5/2
, (9)

which after integration from z = b to z = b + L gives

F = Ni

L
(2πa) μa

[
1

(a2 + b2)3/2
− 1

[a2 + (b + L)2]3/2

]
. (10)

Since the total induced current along the N-turns coil is i = εi/R, where R denotes the resistance
of the coil, we can replace this current i into equation (10) and use equation (8) for εi to get
the desired expression for the total magnetic force on the N-turns coil:

F =
(

N

L
2πa2μ

)2
v

R

[
1

(a2 + b2)3/2
− 1

[a2 + (b + L)2]3/2

]2

, (11)

once again valid for an N-turns coil.
Figure 4 is a plot of this magnetic force as a function of the normalized distance b/a, for

given values of N, a and L, obtained using equation (11). It will be seen that our experiments
replicate this theoretical curve with good accuracy.

From equation (11) one might be led to think that the magnetic force between coils and
magnets in our set-up (figure 1) increases as N2. As a matter of fact, this is not so. First, note
that the length L that appears in the denominator of the first factor on the rhs of that equation
is given by L = ND (assuming a tightly wound coil of a wire with diameter D) and therefore
a factor N cancels in the numerator. Secondly, there is a second factor N in the denominator,
it is implicit in the coil total resistance value R = N(2πa)/(σπD2/4). Finally, note that the
square-bracket factor on the rhs of equation (11) becomes larger as the coil length L = ND
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Figure 4. Magnetic force as a function of the normalized axial distance b/a for a coil of N = 10
turns and radius a = 15.0 mm (plotted for a magnet-to-coil relative speed v = 0.01 m s−1). Here
the abscissa b/a = 0 corresponds to the top of the coil.

Figure 5. Scheme of the two-coupled-oscillator system. The distances b1 and b2 are from the
equilibrium position (dashed line) of the magnets to the respective coil, while x1 and x2 are the
elongations of the mass–spring systems, respectively.

increases and that means a larger force, but the functional dependence on N here is far from
being linear, and a more detailed analysis is required (see appendix A).

It is important to study the dependence of the magnetic force upon the number N because
intuition usually leads to the suggestion that one would get better coupling by simply increasing
the number of turns in the coils, as doing that would increase the linked magnetic flux and
therefore the magnetic induction effects. In appendix A we show that for a small number
of turns, the force does increases linearly with N, but that a maximum value of the magnetic
force is soon reached, and thereafter the magnetic force becomes inversely proportional to N.
Therefore, to test our theoretical model it is advisable to set up the experiments with coils of
a modest number of turns, say 5–15.

2.3. The coupled oscillations: motion equations

Having dealt with the magnetic force on a single oscillating magnet, we now derive the set
of coupled differential equations of the oscillating system. Figure 5 shows the elongation
variables x1(t) and x2(t) of the oscillating magnets. The coils are at distances bi with respect to
the equilibrium position of the magnets.

Figure 6 shows the equivalent low-frequency electrical circuit of the two coils
connected in series, and R1 and R2 denote the electrical resistances of coils 1 and 2,
respectively.
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Figure 6. Electric circuit of the coupling coils of the oscillators. R1 and R2 denote the electrical
resistances of the coils. The coil reactances can be neglected.

We begin the analysis obtaining expressions for the two i.e.m.f.s generated in the circuit
by the two moving magnets, namely ε1(t) and ε2(t) for positions x1(t) and x2(t). Applying
equation (8), we can write

ε1(t) = N

L
(2πa2)μẋ1

[
1

[a2 + (b1 − x1)2]3/2
− 1

[a2 + (b1 − x1 + L)2]3/2

]
. (12)

A second analogous expression can be written for the i.e.m.f. ε2(t) generated in the second
coil, with the elongation coordinate x1 and distance b1 replaced by x2 and b2, respectively. The
total current in the coils’ circuit may be obtained by applying Kirchhoff’s laws:

i(t) = ε1(t) − ε2(t)

R1 + R2
. (13)

Assuming now that the elongations of the two magnet-spring systems are relatively small,
that is xi(t) � bi, xi(t) � a, and assuming identical oscillators (equal masses, equal elastic
constants, equal set-up positions bi = b of the two coils), we may rewrite the coils’ current
using equation (12):

i = (2πa2)N

L
μ

[
1

(a2 + b2)3/2
− 1

[a2 + (b + L)2]3/2

] (
ẋ1 − ẋ2

R1 + R2

)
. (14)

With the same assumptions of the previous paragraph and using the last equation and
equation (11)—already derived for the magnetic force—we may now write the magnetic
force opposing the motion of the magnet,

F =
(

N

L
2πa2μ

)2 [
1

(a2 + b2)3/2
− 1

[a2 + (b + L)2]3/2

]2 (
ẋ1 − ẋ2

R1 + R2

)
. (15)

If we introduce a constant C (in units of s–1), we may rewrite this force as if it were a dragging
or retarding force acting on the magnet:

F = mC(ẋ1 − ẋ2). (16)

Using this expression for the magnetic force and applying Newton’s second law to the motion
of magnet 1, one obtains its motion equation,

mẍ1 = −kx1 − mC(ẋ1 − ẋ2); (17)

an analogous equation may be written for the motion of the second magnet, and thus we get
the set of two coupled differential equations that represents the motion of our two-coupled-
oscillator system:{

ẍ1 + C ẋ1 + ω2
0x1 = C ẋ2

ẍ2 + C ẋ2 + ω2
0x2 = C ẋ1,

(18)
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Figure 7. The beam of light from a bright LED traverses a transparent plastic stepped wedge and
is then detected by a phototransistor. The wedge, once calibrated, transduces the elongations of
the mass-spring into a variable photocurrent.

where the natural angular frequency is given by ω2
0 = k/m. Equations (18) show that

our oscillating system consists of two damped harmonic oscillators of natural frequency ω0,
coupled by the electromagnetically induced current in the coils’ circuit. A term representing
the air drag effects on the oscillators is absent from equations (18) because such effects are in
fact negligible (see figure 11).

3. Experiment setup

We set up our system of vertical coupled oscillators (figure 5) using two 55.0 g ferrite cylindrical
magnets, 2.20 cm in diameter and 2.54 cm in height, hanging from stainless-steel springs of
elastic constant k = 3.17 N m−1 and 25 mm relaxed length. The upper ends of both springs
are attached to a horizontal support. The home-made hollow coils, of a small number N turns
of enamelled copper wire of diameter D = 1.15 mm, were wrung onto short plastic tubes of
radius a = 15 mm, and placed just below the magnets. Longitudinal axes of coils and magnets
coincide.

A 4 cm long stepped wedge, in fact a stack of about 40 plastic strips (figure 7) cut from
a transparency-sheet, was assembled and then placed between the lower end of each spring
and the top of the magnet hanging below. For small vertical displacements of the springs, this
wedge functions as a variable optical density light filter of approximately linear transmittance
T ≈ constant × z, when placed between a white-light bright LED and a phototransistor.

Figure 7 shows the light beam from the LED illuminating the phototransistor after crossing
the lower part of the plastic wedge. When the magnet moves up and down into or nearby the
coils, the light beam is modulated by the approximate linear transmittance of the lower portion
of the plastic wedge. A digital oscilloscope is used to monitor the photocurrent generated at
the phototransistors, and provide digital recordings of the signals. This optical setup is nothing
but a transducer of the elongation of each mass-spring oscillator into a continuous electrical
signal which can be suitably displayed and stored in a digital oscilloscope. An equivalent
LED-wedge filter has been described by Greenhow [11]. A commercial linear optical density
wedge can also be used at a much higher cost.
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Figure 8. Induced e.m.f. as a function of the normalized axial coordinate. The continuous curve
given by the two-dipole approximation reproduces the data plotted (circles) with better accuracy
than the single-dipole approximation (dashes).

It is necessary to adjust the initial position of each magnet—with respect to the nearby
coil below—at a set of convenient values, and thus a set of five tiny holes are perforated in a
plastic strip that goes between the magnet and the wedge. By inserting a small pin in such
holes, one can set the initial amplitudes of the oscillations within a convenient millimetres
range.

4. Experimental work

4.1. Magnetic field measurement

To measure the radial component Bρ of the magnetic field, required in equation (1) for the
evaluation of the i.e.m.f.s, we allowed a magnet to fall along the vertical symmetry z-axis of
an n-turns pick-up coil, of radius a, and measured the i.e.m.f. in that coil as done in a previous
work [8]:

εi = n2πaBρ(z)v. (19)

Here z = vt and the required speed v is previously measured using a second pick-up coil
placed 10 mm below the first [8]. The two transient signals, from the two pick-up coils, are
displayed in a scope, and the time interval between them is then used to obtain an accurate
value of the speed v. Moreover, the magnetic field is better represented if considered to be the
superposition field of two coaxial magnetic dipoles, aligned along the z-axis and separated by a
given distance 2c. This new parameter c is to be found. Using this two-dipole approximation,
we write the component Bρ as

Bρ = 3

2
μza

[
1

(a + (z − c)2)5/2
− 1

(a + (z + c)2)5/2

]
. (20)

Note that both the magnet dipole moment μ and the new parameter c can be found by
simply fitting the experimental curve in our preliminary experiment with the values of Bρ

given by equation (20). In effect, figure 8 shows the experimental values (circles) of
the i.e.m.f. generated by the magnet falling along a 20-turn pick-up coil, plotted against
the normalized axial distance z/a. Also plotted are the two theoretical curves using the
single-dipole approximation (dashed curve) and the two-dipole approximation given by
equation (20) (continuous curve) for the values μ = 3.208 × 10−7 T m3 and c/a = 0.375.
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Figure 9. Damped oscillations of a single magnet interacting with a single coil. The curves
represent the oscillations x1(t) of the magnet as a function time: upper curve for the distance b =
18 mm, lower curve for b = 12 mm (for a coil of N = 10 turns).

Note that the two-dipole approximation is accurate even in the neighbourhood of z =
0; figure 8 shows that only the continuous curve reproduces accurately the position of the
maximum and minimum voltages, the width of that maximum and even the inflection point at
z = 0 of the experimental curve.

4.2. Magnetic force

Using the two-dipole approximation we may rewrite our previous equations (8) and (11) for
the i.e.m.f. and for the magnet–coil interaction force, respectively, as

ε1,N = N

L
(2πa2)μv

1

2

[
1

[a2 + (b − c)2]3/2
− 1

[a2 + (b − c + L)2]
3
2

+
1

[a2 + (b + c)2]3/2
− 1

[a2 + (b + c + L)2]3/2

]
(21)

and

F =
(

N

L
2πa2μ

)2 1

4

v

R

[
1

(a + (b − c)2)3/2
− 1

[a2 + (b − c + L)2]3/2

+
1

(a + (b + c)2)3/2
− 1

[a2 + (b + c + L)2]3/2

]2

. (22)

Since they are more accurate, these are the expressions we shall be using for the i.e.m.f.s and
the magnetic force in what remains of this paper.

Figures 9(a) and (b) are typical experimental plots of the oscillations x1(t) of a single
magnet for two different values of the parameter b. We have also measured the attenuation
constant of our coupled oscillators for small oscillations about the equilibrium point of each
oscillator. This equilibrium point (figure 5) is located at the distance b from the top of the
corresponding coil. The experiments were done for different values of this parameter b and for
coils of different numbers, N, of turns. Let n be the order of the decreasing oscillation peaks
in the curves of figure 9. The heights of such maxima are given by the following equation:

xn = x (nT ) = x0 e− C
2 nT , (23)
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Figure 10. The logarithm of the elongation maxima xn (mm), of a single oscillating magnet as a
function of the order n of such maxima, for b = 18 mm (upper straight line) and b = 12 mm (lower
straight line). The ordinates were calculated using figure 8.

Figure 11. Attenuation constant of the coupled oscillators as a function of the normalized distance
b/a for coils of different number of turns, N = 1, 5, 10 and 22 (crosses, circles, squares and
diamonds, respectively). b/a = 0 corresponds to the top of the coil. The negligible attenuation by
air dragging on the magnets is also shown (thin line) with its error bars, plotted with an amplification
factor of 10.

where T is the period of the oscillations and C is its relaxation or attenuation constant. C
can then be obtained from the curve. If our theoretical model is correct, this constant C must
be the same constant we introduced above in equation (16), in section 2.3, for the dragging
magnetic force on our magnets.

Plotting the logarithm of the successive elongation maxima versus their ordinal number n,
we can find the experimental value of the constant C by fitting a straight line to the experimental
points, as has been done in figure 10. The line fitted to the data is given by the equation

C = −2 (xn − x0)

nT
, (24)

where again the xn is the nth elongation maximum of the magnet and x0 is the initial amplitude
of the oscillations. In figure 11 we show the experimental values of the oscillators attenuation
constant C as a function of the normalized distance b/a for coils of different numbers of turns
N = 1, 5, 10 and 22.

We have plotted in the same figure the theoretical curves (continuous lines) predicted
by equations (15) and (16). The curves are plotted from the centre of each coil towards the
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Figure 12. Maxima of the coupling constant (equivalently, the magnetic force) as a function of the
number of turns, N, of the coils. The force reaches a maximum at about N = 18 and then decays
for coils with larger numbers of turns. The circles correspond to experimental data.

positive values of the equilibrium position. For the experimental curves plotted in figure 11,
the centre of each coil was located at the normalized coordinate − L/2a = − ND/2a = −0.037,
−0.183, −0.367 and −0807 for N = 1, 5, 10, 22, respectively. The curves are symmetrical
with respect to such coordinates (see also figure 4 which is the curve for N = 10, and the
figure in appendix A). Figure 11 also shows the attenuation on the magnets—amplified by a
factor of 10—produced by air dragging effects (with the coils in open circuit); the maximum
attenuation 0.019 s−1 occurs with the magnet completely inside the coil (at b/a = −1), a value
two orders of magnitude smaller than the attenuation by the Joule effect considered by us.

Figure 12 shows the experimentally obtained maximum values of the coupling constant C
as a function of the number of coil turns N (note that the interaction force being proportional
to C is also represented in this figure). The plotted points correspond to coils of N = 1, 5, 10,
22, and 40. The continuous curve superimposed to the data points has been obtained using
equation (22). It may be seen that the maximum of the interaction force grows linearly for a
small number of turns, as intuition dictates, but soon the curve reaches a maximum and later
decays as N increases, in accordance with our model. The maximum occurs for N ≈ 18 that
corresponds to the parameter ND/a ≈ 1.3.

In effect, when the number of turns increases, the induced e.m.f. increases too
(equation (8)), but the resistance R of the coil also increases with N, and this forces the
current to decrease. At the same time the total i.e.m.f. is produced only by the very first turns
of the coil since the magnetic field of the magnet is of short range. Moreover, the magnet once
moving inside a coil produces opposite effects in the loops of wire above and below the coil
mid-plane as proved by the anti-symmetrical curve (figure 8) of the i.e.m.f. [8].

4.3. Experiments with the coupled oscillators and their models

The general solution to the linear system of two coupled differential equations (18) is a
superposition of a symmetric normal mode of oscillation x1(t) = x2(t) = A cos(ω0t),

of angular eigenfrequency ω0 and an anti-symmetric normal mode represented by x1(t) =
−x2(t) = B e−Ct cos (ω′

0t), whose eigenfrequency is ω′
0 =

√
ω2

0 − C2.
Since the electro-magnetic coupling between the two magnet–spring systems is weak, we

may consider that the coupling constant fulfils C � ω0, thenceforth ω′
0

∼= ω0, and thus the
general solution to our system of coupled differential equations is just a linear combination of
the following two solutions:
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x1(t) = A cos ω0t + B e−Ct cos(ω0t) ∼= (A + B e−Ct ) cos ω0t, (25a)

x2(t) = A cos ω0t − B e−Ct cos(ω0t) ∼= (A − B e−Ct ) cos ω0t. (25b)

This is the mathematical representation of the elongations of the two magnet–spring oscillators
being considered.

Below we analyse two cases of interest of the coupled oscillations of the magnets that
may result from varying the initial conditions of motion.

4.3.1. Case I experiment: model and results. At time t = 0, magnet 2 will be set at
x2(0) = 0, and left there at rest, while magnet 1 will be initially displaced at the vertical
position x1(0) = 2A and then allowed to oscillate. This implies A = B, as can be easily
checked using equations (25a) and (25b) above, which become

x1(t) = A(1 + e−Ct ) cos(ω0t), (26a)

x2(t) = A(1 − e−Ct ) cos(ω0t). (26b)

Each of these two functions is the sum of two harmonic terms: the first of them of constant
amplitude A, the second of exponentially decaying amplitude with relaxation, or attenuation,
constant C. These equations predict that after a sufficient number of complete oscillations both
oscillators’ amplitudes should become equal. Then the coupling term becomes zero and the
motions of the two magnets are uncoupled:

ẋ1(t) = ẋ2(t) ⇒ ẍ1(t) + ω2
0x1(t) = 0. (27)

The two functions in equations (25) are solutions to equations 18(a), (b) and satisfy the
initial conditions for the positions, but only approximately for the initial speeds. Phase
differences must be included in the cosine factors in order to exactly satisfy both the position
and the speed initial conditions. A more extensive analysis of the solutions can be found in
appendix B.

At the beginning of section 3, and in figure 7, we described how to set-up our
electromagnetically coupled oscillating system, and explained a technique to determine the
elongations of the two oscillating magnets using a LED, a phototransistor and a home-made
optical density wedge. The oscillators’ parameters used for all the experiments described
below are the mass of the magnets m = 55 g, spring constant k = 3.17 N m−1, period of
natural oscillations T = 0.855 s and natural angular frequency ω0 = 7.35 rad s−1 (equivalent
to a frequency ≈1.17 Hz).

Figures 13(a) and (b) show the positions (in mm) of the two magnets as directly read from
the oscilloscope screen used to monitor the signals generated by the two phototransistors of the
setup. Magnet 1 was initially set in harmonic oscillations from rest with an amplitude 2A =
5 mm, while magnet 2 was initially placed at rest at its equilibrium position. The magnet-to-
coil equilibrium distance is b = 17 mm for both magnets. In the figures we observe the latter
oscillating with increasing elongations, while magnet 1 oscillates with decreasing amplitude,
until a regime develops in which both magnets oscillate in phase with the same amplitude.
This happens after both magnets complete about twelve oscillations. The elongations of
magnet 1 reduced to A = 2.5 mm, i.e. half of its initial amplitude, while magnet 2 elongations
grew from zero to the same amplitude A. From t ≈ 13 s onwards the oscillations of magnet 2
remain of constant amplitude, showing that the air drag on both magnets is negligible.

Small fluctuations in the amplitude of the oscillations of magnet 1 can be noticed in
figure 13(a). They are produced by undesirable small lateral oscillations of the magnet, away
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(a)

(b)

(c)

Figure 13. (a) and (b) Elongations (in mm) of the two oscillators as a function of time when
magnet 2 starts oscillating from rest at its equilibrium position. (c) Induced current (in arbitrary
units) in the coils’ circuit as a function of time. After the two oscillators reach the same amplitude,
the current becomes negligible.

from the coil axis, which arise from small mechanical perturbations when the magnet is just
set into motion at t = 0 by the experimenter (the magnet behaves as a conical magnet if one
is not careful enough to set it in vertical motion).

Figure 13(c) shows the measured induced electrical current i(t) through the coils. As soon
as the two magnets reach equal amplitude oscillations, the current in the coils’ circuit fell to
zero. As shown in the appendix, the electrical current in the coils’ circuit can be represented
by (see appendix C)

i(t) = −A′ e−Ct sin (ω0t) , (28)

where

A′ = 2Aaω0 = 2

√
mC

R
aω0,

which shows that the current eventually falls to zero.
According to equation (14) the electrical current in the coils’ circuit is proportional to the

speed difference of the oscillating magnets. Thus, when magnet 1 begins oscillating it delivers
energy to the other oscillating magnet, via the electrical current in the coils circuit, which
then increases its elongations. But this transfer of energy is hindered by the heat dissipated
in the circuit. The coils’ circuit current being dependent upon several of the setup parameters
assumes the role of an adjustable coupling.1

It may be seen in figure 13 that as soon as the two magnets reach the same maxima
of elongations and oscillate in phase (at ≈ 12T), the two i.e.m.f.s are, π -rad, out of phase
and the current present in the coils’ circuit become practically zero. The whole oscillating
system is then being damped only by the small mechanical air drag on the oscillators, and the
system remains in that regime for relatively long time (figure 13(b)). While half of the total
initial mechanical energy of magnet 1 is dissipated as heat in the coils circuit (as explained in
appendix C), the other half is shared by the two magnets that equate their amplitudes to half
of the initial amplitude of magnet 1.

1 An interesting feature of our coupled oscillators is the adjustable nature of the coupling variable, the electrical
current. The latter depends upon the coils’ number of turns N, the resistance R of the coils’ circuit and the coil-to-
magnet distance b. Also, the smaller the distance b the larger the coupling. The coupling could be greatly reduced by
simply connecting a resistor in series with the coils.



Magnetically coupled magnet–spring oscillators 447

Figure 14. Plot of the logarithm of the exponential term of the elongation maxima of the two
magnets in case I. The two lower fitted lines correspond to the coupled magnets: crosses for
magnet 1, circles for magnet 2. The upper line shows the logarithm of the maxima of the induced
current in the coils.

From figures 13(a) and (b) we obtain the maxima values xn of the magnet elongations, by
simply subtracting the constant amplitude term (see equations (26)). From the additional plot
ln (xn–A) versus n shown in figure 14, we then managed to calculate the different coupling
constants C for the magnets and the current oscillations (by simply measuring the slopes of
the lines plotted).

In figure 14 the two lower lines correspond to the two coupled magnets and from them
we have obtained the slope values 0.257 s−1 for magnet 1 and 0.275 s−1 for magnet 2. The
upper line, whose slope is 0.202 s−1, represents the logarithm of the maxima of the induced
current. These values are to be compared with the theoretical value of the attenuation constant
C = 0.280 s−1 directly obtained using our model (see equations (15), (16) and (22)) for the
values b = 17 mm and N = 10. Note the departures of the elongations of magnet 1 from the
fitted straight line. Once again, they are explained by the undesirable lateral oscillations of
the magnet inside the coil, as already mentioned above.

4.3.2. Case II experiment: model and results. In the second experiment, the magnets are to
be set into oscillations starting from initial coordinates B and −B respectively, simply meaning
that A = 0 in equations (25a) and (25b). Then we may write the two magnets’ positions as
x1(t) = B e−Ct cos ω0t and x2(t) = −B e−Ct cos ω0t, functions that represent two opposite
damped harmonic oscillators. The magnets will be seen oscillating in perfect synchrony but
π -radian out of phase. Moreover, as the magnets are set to oscillate with the same amplitude
but π -radians out of phase we may write (using equations (18))

ẋ1(t) = −ẋ2(t) ⇒ ẍ1(t) + 2C ẋ1(t) + ω2
0x1(t) = 0; (29)

that is, both magnets should be seen executing damped harmonic oscillations with a decaying
factor exp[−2(C/2)t] = exp[−Ct].

Figure 15 shows the actual results obtained for the two magnets oscillating π -radians out
of phase. As indicated in case II above, both magnets were initially displaced by the same
distance B from their equilibrium positions (b = 13.5 mm in this experiment), one upwards,
the other downwards. In this case, the two i.e.m.f.s in the two coils are initially in phase, and
remain so during the magnets’ oscillations. Moreover, the coil current is relatively large, and
the damping is strong. The magnets come to a halt in a short period of time, and figure 15(c)
shows that, as expected, the current soon decays to zero.

From figures 15(a) and (b) we obtained the coordinates xn of the maxima of the magnet
elongations, and from the slopes of additional plots ln xn versus n (not shown) we calculated
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(a)

(b)

(c)

Figure 15. Elongations x1 and x2 (in mm) of the oscillators, and the induced current (lower curve)
in the coils’ circuit as a function of time when the magnets start oscillating π -radians out of phase.

the attenuation new constants C of the magnet oscillations and that of the induced current.
The slopes in this second experiment are as follows: 0.380 s−1, 0.420 s−1 and 0.309 s−1 for the
two magnets and the induced current, respectively. The predicted value of C for the present
case is 0.404 s−1.

4.4. Measuring the electrical current in the coils’ circuit

It is also important to have an idea of the electrical currents induced by the magnet–coil
interactions, a variable we cannot directly measure in our experiment. Instead, we measured
the induced e.m.f. εi in the open-circuit mode using a second auxiliary coil of approximately
60 turns wrung onto both setup coils. The electrical current was then calculated simply using
its definition i = εi/R, where R is the circuit total resistance. The auxiliary coil used was
previously calibrated in a separate experiment by comparing with the e.m.f. induced in the
main coil, also in the open-circuit mode. Note that in our setup the total electrical resistance
is R = R1 + R2 + Rwire = 17.2 + 17.2 + 8.0 = 42.4 m �, where Rwire is the resistance of the
wire connecting the two coils. This total resistance is about 2.5 times the value measured for
a single coil. It is interesting to note that the electrical currents that are generated in the coils’
circuit are relatively large, of the order of 0.1A in spite of the relatively small induced e.m.f.
in the coils by the magnets varying magnetic flux, which are of the order of millivolts.

5. Discussion and conclusions

A pair of magnets vertically oscillating inside hollow magnetic coils connected in series
constitutes an interesting new case of coupled oscillators. This system is mechanical but its
coupling is electromagnetic, not mechanical. It may be set up with low-cost and modest
equipment, readily available in physics laboratories. A set of relations and preliminary
experiments have been performed to find the crucial variables of the coupling, namely the
induced e.m.f., the induced currents in the coils and the magnetic force between a coil and a
magnet. The air drag attenuation on the motion of the magnets was also measured and found
negligible. Contrary to intuition the electro-magnetic coupling of our coupled oscillators is not
simply directly proportional to the number N of turns in the coils, instead we found a nonlinear
dependence upon that number, and that the coupling indeed goes through a maximum as N
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varies. We have presented above a successful analytical model for the coupled oscillator
system, and performed the experiments to validate the model. A set of two major experiments
have been performed to confirm, in a number of ways, the results predicted by the model.
In spite of the natural small differences, in the magnet masses, electrical resistance of the
coils, different electric dipoles, and the like, our experimental results are of good accuracy.
As expected, the measured energy losses caused by air drag on the oscillators are negligible.
An important result reported in this work is the measured induced electrical current in the two
experimental cases considered.

We believe that our system of coupled oscillators can be used, not only as a demonstration
experiment but also as a useful undergraduate laboratory project for honours degree students. It
provides many opportunities to introduce all the concepts and relations of coupled oscillators,
being in addition a coupled and damped system. With this system of coupled oscillators, one
can obtain very accurate results. When performing the experiments we found it very important
to keep the magnets oscillating along the vertical, as small initial perturbations rapidly develop
into transverse coupled oscillations, the magnets becoming conical oscillators. This is to be
avoided. Also, care has to be taken in choosing the vertical axes along which the two magnets
oscillate sufficiently separated; otherwise, the magnets will interact and drastically perturb
the experiments. In our case we chose axes at about 1 m separation. We believe that both
the mathematical model and the experiments performed in the present study can be used to
introduce physics students to the problem of coupled oscillators subjected to adjustable and
weak coupling.
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Appendix A.

We show that when the number of turns N in a coil is small, the magnetic force on a coaxially
moving magnet, with speed v, is proportional to N, and when that number is large, the magnetic
force is inversely proportional to that number. There occurs a maximum force when the length
L of the coil is approximately equal to its radius a. Let l = 2π a be the length of a single
loop of wire and σ its conductivity. With the variable u = z/a, the length of the coil given
by L = ND, and its electrical resistance by R = N2πa/(σπD2/4), our equation (11) for the
magnetic force may be conveniently rewritten as

F = π2μ2σv

2Na3

[
1

(1 + u2)3/2
− 1[

1 +
(
u + ND

a

)2]3/2

]2

. (A.1)

This force appears plotted in figure A1 for different values of N = 1, 3, 5, . . . , 39, evaluated
for a typical magnet maximum speed v = 0.01 m s−1. The curves in that figure have been
traced from infinite distance above the coil up to the coil centre.

When the number of turns N is small (say 1–10), we have ND/a � 1 and the square
bracket in the denominator on the rhs of equation (A.1) may be expanded as

1[
1 +

(
u + ND

a

)2] 3
2

≈ 1[
1 + u2 + 2uND

a

] 3
2

= · · · = 1

(1 + u2)3/2

[
1 +

2uND

a(1 + u2)

]−3/2

= 1

(1 + u2)3/2

[
1 − 3uND

a(1 + u2)

]
. (A.2)
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Figure A1. Magnetic force as a function of the magnet-to-coil distance . The distance b is measured
from the top of the coil to the magnet; a is the coil radius. The curves have been plotted for N =
1, 3, 5, . . . , 39 (lower curve corresponds to N = 1).

Replacing this result in equation (A.1) we get

F = π2μ2σv

2Na3(1 + u2)3

[
3uND

a(1 + u2)

]2

= 9π2μ2σvu2ND2

2a5(1 + u2)5
, (A.3)

which shows that the magnetic force is certainly proportional to N when N is small.
Furthermore, note that for N = 1, the last expression is the same as equation (5), already
derived for a single turn in section 2.1. When N is large (say N > 20), the second term in the
square bracket of (A.1) may be neglected, and the magnetic force decreases with the number
of turns, this is expected since the resistance of the coil is then large. A straightforward,
yet lengthy, calculation shows that the magnetic force does indeed reach a maximum for
(ND/a) ∼= 1.3, and this is exactly what our experimental results show (figure 12). Note that
in the main text we have chosen to plot the coupling constant C instead of the magnetic
interaction force. These two are related by C = F/mv. In our experiments the product mv is
0.055 kg × 0.01 m s−1 = 0.55 × 10−3 kg m s−1.

Appendix B.

Here we show that our equations (25) above give an adequate approximation for the initial
conditions of the experiments described in case I and case II. The most general way of
expressing the actual positions x1(t) and x2(t) of the two oscillators is

x1(t) = A cos(ω0t + δ) + B e−Ct cos(ω′
0t + δ′), (B.1)

x2(t) = A cos(ω0t + δ) − B e−Ct cos(ω′
0t + δ′), (B.2)

which after taking derivatives gives the speeds of the two oscillators,

ẋ1(t) = −ω0A sin(ω0t + δ) − ω′
0B e−Ct sin(ω′

0t + δ′) − CB e−Ct cos(ω′
0t + δ′), (B.3)

ẋ2(t) = −ω0A sin(ω0t + δ) + ω′
0B e−Ct sin(ω′

0t + δ′) + CB e−Ct cos(ω′
0t + δ′). (B.4)

Note that we have introduced four unknown coefficients A, B, δ and δ′ which have to be found
from the initial conditions.
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Fortunately for t = 0, we get,

x1 (0) = 
 = A cos δ + B cos δ′, (B.5)

x2 (0) = 0 = A cos δ − B cos δ′, (B.6)

and

− ẋ1 (0) = 0 = ω0A sin δ + ω′
0B sin δ′ + CB cos δ′, (B.7)

− ẋ1 (0) = 0 = ω0A sin δ + ω′
0B sin δ′ + CB cos δ′. (B.8)

Solving the linear system of these four equations, we get,

tan δ = 0, tan δ′ = − C

ω′
0
, (B.9)

A = 


2
, B = 


2 cos δ′ = ω0


2ω′
0
. (B.10)

Finally, since the damping constant C ∼ 0.257 is much less than ω′ ≈ ω0 = 7.35 rad s−1 (see
the case I experiment), the actual values of the phase constants are truly negligible, namely
δ = 0 and δ′ = −2◦, we have A = B = 
/2 leading to equation (25) in the main text.

Appendix C. Energy conservation applied to the coupled oscillators

We show that, for the oscillations studied in case I, the analytical model of the two coupled
oscillators satisfies the conservation of energy (the other case can be treated analogously). We
evaluate the amount of energy dissipated as heat by the two coil resistances, and compare it
with the difference of energy lost by the mechanical oscillators.

In case I magnet 1 begins its oscillations with amplitude 2A, while magnet 2 starts from
rest at the equilibrium position. Then the initial total energy Ei may be written as

Ei = 1
2k(2A)2 + 0 = 2kA2, (C.1)

where k = mω0
2 is the elastic constant of the oscillators springs. The final energy Ef of the

oscillators, after about 12 complete oscillations, when both reach the amplitude A is

Ef = 1
2kA2 + 1

2kA2 = kA2. (C.2)

Therefore, the mechanical energy change 
E in the mechanical system is


E = Ef − Ei = −kA2, (C.3)

which is expected to be equal to the energy dissipated as an amount of heat Q, in the coils’
circuit. Let us therefore evaluate the heat Q. The induced current in the coils’ circuit is given
by equation (14), and may be rewritten in terms of our constant attenuation C introduced in
equations (16) and (17) as

i(t) =
√

mC

R1 + R2
(ẋ1 − ẋ2) = C ′(ẋ1 − ẋ2), (C.4)

where the constant C is given by

C = (2πa2)Nμ

L(R1 + R2)

[
1

(a2 + b2)3/2
− 1

[a2 + (b + L)2]3/2

]
, (C.5)
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and C′ is given by

C ′ =
√

mC

R1 + R2
. (C.6)

The elongations of the two oscillating magnets in case I are given by (26a) and (26b), which
after differentiation and considering that C � ω0 give

(ẋ1 − ẋ2) = −2ω0A e−Ct sin(ω0t), (C.7)

and therefore,

i(t) = −2ω0C
′A e−Ct sin(ω0t). (C.8)

The total heat dissipated at the two coils is then

Q =
∫ ∞

0
(R1 + R2)i

2 dt, (C.9)

or

Q = (R1 + R2)(−2ω0C
′A)2

∫ ∞

0
e−Ct (sin (ω0t))

2 dt. (C.10)

The integral on the rhs gives∫ ∞

0
e−Ct (sin(ω0t))

2 dt = 1

4C
− 1

4
(
ω2

0 + C2
) ∼= 1

4C
. (C.11)

The expression for the heat Q then simplifies to

Q = mω2
0A

2 = kA2, (C.12)

which is exactly the amount of mechanical energy 
E lost by the oscillators, found above
(equation (C.3)).
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