NOTES AND DISCUSSION

in the funnel, and the spring is made to oscillate. The
period of oscillation is determined. The funnel is now made
to come to rest in the equilibrium position, and the lower
of the two 5-in. rings, known as the stopping ring, is
brought in contact with the stopping rod.

Now the spring is extended downward, and the funnel
fixed in its lower position. When released, the funnel will
rise to its equilibrium position where it is stopped. The
steel sphere will continue rising to a height determined
by the velocity the funnel had when stopped, and the
value of the acceleration due to gravity.

The upper of the 5-in. support rings, known as the
measuring ring, is adjusted to determine the height to
which the sphere rose. This is done by sighting across the
top of the ring and making it level with the top of the
sphere in its extreme upper position.

The funnel is now held securely against the stopping
ring, which places it in its equilibrium position, and a
meter stick inserted down the spring and made to rest on
the top of the sphere. The height to which the sphere rose
can now be read by sighting across the measuring ring.
The funnel is now fixed in its lower position, and the height
to the measuring ring is taken. The difference between this
height and the height to which the sphere rose from the
equilibrium position is the distance the funnel and sphere
moved before being stopped, and is the measure of the
radius of reference circle. This can be used to calculate the
initial velocity of the steel sphere.

It is necessary to correct for the damping effect that
takes place during the first one-fourth of an oscillation of
the spring. This damping effect is obvious when the funnel
is allowed to execute a complete vibration. The value of
the damping effect for the first one-fourth vibration can
be found by allowing the funnel to execute a complete
vibration, releasing it from its fixed lower position. Meas-
ure the distance by which it fails to return to its position
of release. One-fourth of this may then be subtracted from
the original value of the radius of the reference circle to
obtain the effective radius of the reference circle.

Sample data taken from a run with a $-in. steel ball in
the funnel and 21 turns of spring are:

Time of oscillation of the spring 1.200 sec
Height to which the sphere rose 18.7 cm
Distance from sphere at release until stopped 37.0 cm
One-fourth of damping during first oscillation 0.5 cm
Effective radius of reference circle 36.5 cm

This yields a value of 975 cm/sec? for the value of
gravitational acceleration.

The student in this experiment is trying to determine
a value that is known with a high degree of accuracy. The
role of experimental error soon becomes apparent to him.
The time of oscillation, in particular, should be the result
of averaging several observations so as to obtain four
places in the value for time. Accuracy is improved by
averaging values obtained for the height to which the ball
rose. A meter stick supported so as to pass down the
center of the spring to the approximate height to which
the ball is expected to rise can improve the values ob-
tained for this observation. More than one-half of the
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values computed should lie between the values of 975
cm/sec? and 985 cm /sec?.

Demonstration Gyroscope

J. R. Prescort
University of Alberta, Calgary, Alberia, Canada

ECENTLY, Dosso and Vidal! have described large-

scale apparatus for angular motion demonstrations,
including a bicycle-wheel gyroscope. Leybold (Cat. No.
348 18) produce a large Maxwell top of bicycle-whee! di-
mensions which can be used for other demonstrations
concerning angular motion.

The present note describes an apparatus (Fig. 1) that
enables a variety of phenomena involving angular-mo-
mentum conservation to be demonstrated to large classes.
It consists of a bicycle wheel mounted on the end of an
arm pivoted on ball-races to rotate about either a vertical
or horizontal axis: for rigidity, the arm is constructed of
1-in. aluminum tubing. An adjustable counter-weight on
the arm allows a selected torque to be applied about an
axis perpendicular to the angular-momentum axis of the
wheel, or for the wheel to spin under the action of zero
torque. The rim of the bicycle wheel is loaded with copper
wire to increase its moment of inertia. The arm on which
the wheel is mounted represents the direction of the
angular-momentum vector, and an arrowhead can be
clipped on either end of the arm to indicate the sense of

F1G. 1. Bicycle-wheel gyroscope.



394

FiG. 2, Cycloidal paths traced by the axis of a
gyroscope undergoing nutation,

this vector. A further clip-on arrow shows the direction
of the torque vector.

In the absence of external torques, conservation of
angular momentum requires that not only should the
magnitude remain constant, but that the direction of the
vector should remain fixed in space. If the counterweight
is adjusted for zero torque, and the axis set to some fixed
direction (for best effect, inclined to the horizontal), the
whole apparatus may be carried about the lecture room
while the axis continues to point in its original direction.
While it is, of course, true that any rigid body, spinning
or not, retains its orientation in space in the absence of an
external torque, the present demonstration underlines the
vector character of angular momentum.

The standard expression £= € XL relating the torque
x, angular momentum L, and the angular velocity of
precession & is illustrated semiquantitatively: Selected
torques, preferably in integral ratios, are applied and the
precessional-angular velocity measured for a fixed angular
momentum. If a strobo-flash unit is available for finding
the angular velocity of the wheel, the precessional-angular
velocity can be found as a function of angular momentum
with a fixed torque. The large size of the apparatus makes
evident the relations between the directions of the vectors
concerned. It is also easily demonstrated that “hurrying”
the precession produces a torque counter to the applied
torque.

It is not always appreciated by students that the ex-
pression ©=£ XL strictly applies only after steady pre-
cession is established. If the torque is suddenly applied,
the system undergoes nutation. In the present apparatus,
the period of nutation is slow enough and its amplitude
large enough to be easily seen, and the cycloidal path
traced by the end of the angular momentum axis is beauti-
fully exhibited. Figure 2 shows photographs of such
cycloids taken with a small lamp fixed to the end of the
axis. If the nutation is damped out by means of pads held
against the horizontal axis of the apparatus, it settles
down with the angular-momentum axis displaced in the
sense of the applied torque, demonstrating that a compo-
nent of the spin angular momentum has been applied
to provide the necessary angular momentum about the
precession axis.

NOTES AND DISCUSSION

The prototype of this apparatus was constructed by E.
Wood of the University of British Columbia and the
present model by J. Steeples of the University of Alberta,
Calgary.

1H, W. Dosso and R, H. Vidal, Am. J. Phys. 30, 528 (1962).

Falling Satellite

Don. C. KELLY
Miami Universily, Oxford, Ohio

UTURE generations might determine the advent of

the space age by plotting, chronologically, the frac-

tion of introductory texts that include a discussion of

earth satellites. The introduction of such satellite problems

is generally advanced as an application of Newton's law

of gravitation. One observes that the satellite experiences
a single external force

F=GMm/R, (1)

where G is the gravitational constant, M, and m the
masses of the earth and satellite, and R the (circular)
orbit radius. Using Newton’s second law enables one to
recognize the resulting “centripetal” acceleration

a=1*/R (v=orbital speed) )

as GM,./R%. This in turn leads to an expression for the
satellite period
T=2xR(R/GM.)}, &)

which may be compared with the observed periods of
nearly 90 min.

If the discussion is dropped at this point, the student
may be only partially convinced, being left with the un-
answered question, “If the acceleration is gravitational,
and radially inward, why doesn’t the satellite fall to earth
like any other law-abiding body?” The following deriva-
tion may prove useful in demonstrating that the orbiting
satellite is indeed falling like any gravitational law-abiding
body should. In particular, it obeys the equation govern-
ing the motion of a freely falling body undergoing a
constant acceleration, viz.

s=%af?, 4)

a fact which ought to convince the student that satellites
do fall.

Fi1G, 1, Falling satellite.




