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Abstract
The International Young Physicists’ Tournament (IYPT) is a worldwide, annual
competition for high school students. This paper is adapted from the winning
solution to Problem 14, Magnetic Spring, as presented in the final round of
the 23rd IYPT in Vienna, Austria. Two magnets were arranged on top of
each other on a common axis. One was fixed, while the other could move
vertically. Various parameters of interest were investigated, including the
effective gravitational acceleration, the strength, size, mass and geometry of
the magnets, and damping of the oscillations. Despite its simplicity, this setup
yielded a number of interesting and unexpected relations. The first stage of
the investigation was concerned only with the undamped oscillations of small
amplitudes, and the period of small amplitude oscillations was found to be
dependent only on the eighth root of important magnet properties such as
its strength and mass. The second stage sought to investigate more general
oscillations. A numerical model which took into account magnet size, magnet
geometry and damping effects was developed to model the general oscillations.
Air resistance and friction were found to be significant sources of damping,
while eddy currents were negligible.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The International Young Physicists’ Tournament (IYPT)4 is a worldwide, annual competition
for high school students. This paper is adapted from the winning solution to Problem 14,
Magnetic Spring, as presented in the final round of the 23rd IYPT in Vienna, Austria.
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Table 1. Magnet dimensions and masses.

Radius (cm)

Magnet Type Inner Outer Thickness (cm) Mass (g)

A Large ring 0.300 0.950 1.000 19.9
B Large ring 0.300 0.950 1.000 19.8
C Small button – 0.600 0.600 7.3
D Small button – 0.600 0.600 7.3
E Small ring 0.345 0.600 0.620 5.5
F Small ring 0.345 0.600 0.620 5.5

When two magnets are arranged on top of each other such that one of them is fixed and
the other one can move vertically, oscillatory motion may be observed. Despite the simplicity
of the setup, our study revealed a few interesting relations. In typical oscillations, frequency
increases with increased spring constant and decreases with increased inertia. In this setup,
however, the frequency of small amplitude oscillations was found to decrease slowly as the
strengths of the magnets were increased, and increase slowly as the mass of the oscillating
magnet was increased. To gain physical insight into how these seemingly paradoxical relations
arose, undamped oscillations with small amplitudes were first studied. A more general model
accounting for damping due to air resistance and friction, the finite size and geometry of the
magnets as well as large amplitude oscillations is formulated in the second part of the paper.

Similar studies on oscillations involving magnets have been conducted before, but this
particular motion has not been fully investigated. Heddle (1970) reported that ring magnets
are suitable as a demonstration of strongly coupled oscillators, but did not conduct a detailed
investigation. Haines and Michaelis (1989) carried out a detailed experimental and theoretical
study on magnets suspended by Pierrus suspension, but left out vertical oscillations. Geim et al
(1999) focused on the levitation of magnets using diamagnetic materials without investigation
of oscillations. More recently, Moloney (2008) conducted an investigation on coupled
oscillations of two magnets placed at the same height.

2. Materials

Cylindrical neodymium magnets were used in all our experiments. Three types of magnets
were used: large ring magnets, small button magnets and small ring magnets. The masses of
the magnets were found using a digital mass balance, and the dimensions of the magnets were
measured with vernier calipers. Table 1 shows the dimensions and mass of each magnet.

3. Oscillations with small amplitudes

The first experiments were conducted to investigate undamped small amplitude oscillations.
To minimize damping, the experiments were conducted on an air track, as shown in
figure 1. The mass of an air track cart was found using an electronic weighing balance
to be 183.0 g. The air track was supported by a lab jack on one end; by varying the height
of the jack, the angle of tilt of the track was varied. The angle of tilt determines the value of
effective gravitational acceleration, which is an independent variable in the experiment.

The magnets were made to settle in their equilibrium positions before the oscillating
magnet was displaced about 0.5 cm from equilibrium and allowed to oscillate. The time
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Figure 1. Experimental setup used to investigate small amplitude oscillations.

taken for 40 oscillations was recorded and used to determine the oscillation frequency. This
procedure was repeated for each angle of tilt and type of magnet.

A theoretical model which produces key features of the oscillations was formulated. For
simplicity, the magnets were assumed to be uniformly magnetized with their magnetization
parallel to the axis of symmetry of the cylinder. Because the magnets are small compared
to the distance between them (about 6 cm), they may be treated as point dipoles with dipole
moments of magnitude μM1 and μM2 . Point dipoles serve as good approximations for button
magnets due to their simple geometry. The ring magnet is more complicated due to its central
cavity, but its magnetic field still approximates that of a dipole at large distances, as shown in
figure 2. The magnetic field, B, generated by the stationary magnet with dipole moment μM1

is (Griffiths 1999)

B = μ0μM1

4πr3
(2 cos θ r̂ + sin θ θ̂) (1)

where r̂ and θ̂ are given in figure 3. In our investigation, the magnets are oscillating along the
z axis; thus, θ is 0.

The magnetic energy associated with the interaction between μM1 and μM2 is given by
(Griffiths 1999)

U = −μM2
· B. (2)

μM1 and μM2 were obtained from an experimental plot of B against z, as measured by a
Hall probe. A plot of potential energy against the separation between the magnets is shown
in figure 4. The minimum in the potential energy graph is the equilibrium position of the
oscillations. The dipole model indicates that increases in potential energy on both sides of
the equilibrium position are asymmetrical. Thus, the resulting oscillations will, in general, be
nonlinear, something which we will consider in detail when formulating the general model in
section 4. The force FM on the magnet can then be found by taking the slope of the energy
function:

FM = −dU

dz
= μM2

dB

dz
. (3)

Substituting equation (1) into equation (3) gives the equation of motion for this oscillation:

mz̈ = 3μ0μM1μM2

2πz4
− mg. (4)
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(a)

(b)

Figure 2. The field around a ring magnet. (a) At small distances. (b) At large distances, the field
approximates that of a dipole.

At the equilibrium position, the force is zero. Thus, the equilibrium position z0 is given
by

z0 = 4

√
3μ0μM1μM2

2πmg
. (5)

Let x = z − z0 be the displacement from equilibrium. Binomial expansion to the first
order can be used to approximate the expression of the magnetic force for small displacements
from equilibrium:

mẍ ≈ −6μ0μM1μM2

πz5
0

x. (6)

Under this first-order approximation, the oscillations become simple harmonic with
frequency f , given by

f =
(

2m

3π7μ0μM1μM2

) 1
8

g
5
8 (7)
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Figure 3. Definition of coordinates in equation (1).

Figure 4. Potential energy against displacement for magnets E and F.

where m is the combined mass of the oscillating magnet plus the air track cart and g is the
value of effective gravitational acceleration. This equation grants much physical insight into
the oscillations.

First, the frequency of the oscillations increases very gradually with the eighth root of
mass. This may initially seem counter-intuitive, as the frequency normally decreases with
increasing inertia. However, besides causing an increase in inertia, the increased mass of
the magnet also brings the equilibrium position closer to the fixed magnet, where the axial
magnetic field varies much more rapidly with respect to z. This produces an increase in the
spring constant, thus increasing the frequency of the oscillations. In this case, the addition of
mass brings out two competing effects, one of which dominates slightly, explaining why the
frequency depends only on the eighth root of mass.
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Figure 5. Graph of results obtained for the oscillation of large ring magnets A and B.

Table 2. Summary of results for small amplitude oscillations.

Experimental % deviation
Fixed magnet Oscillating magnet slope from theory

C (small button) D (small button) 0.600 4.0
C (small button) B (large ring) 0.597 4.5
E (small ring) D (small button) 0.592 5.3
A (large ring) B (large ring) 0.587 6.1
E (small ring) F (small ring) 0.585 6.4
A (large ring) F (small ring) 0.583 6.7

Secondly, the frequency of the oscillations decreases as the magnetic moments of the
magnets are increased. This may seem counter-intuitive again, as a greater magnetic moment
should result in a greater spring constant and thus an increase in frequency instead. The
resolution again lies in the change in equilibrium position. An increase in magnetic moment
pushes the equilibrium position further from the fixed magnet, resulting in a decrease in the
spring constant. Again there are two competing factors, explaining why the frequency is also
only dependent on the eighth root of the magnetic moments.

Thirdly, the frequency is directly proportional to the 5/8th power of the effective
gravitational acceleration. Thus, a plot of ln(frequency/Hz) against ln(effective gravitational
acceleration/m s−2) should produce a straight line with the slope of 5/8 = 0.625. Experimental
data were plotted this way and figure 5 shows a graph of the data that were obtained for the
oscillation of large ring magnets. Other experiments with magnets of different sizes and
geometries gave similar graphs.

The data obtained do indeed give a straight line, as predicted by theory. The experimental
slope can be compared to the theoretical value of 0.625, and table 2 summarizes the results of
this comparison for various magnet sizes and geometries. The data were arranged in ascending
order of deviation from the theoretical slope of 0.625.
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Small button magnets followed theoretical predictions the most closely, because their
small size and simple geometry make the point dipole an excellent approximation. Whenever
large magnets or ring magnets were used, the deviations from theoretical predictions were
more significant. This is expected because the dipole approximation becomes less accurate.

The investigation into small amplitude oscillations has allowed us to gain valuable physical
insight. However, the data indicate that the dipole approximation begins to fail whenever large
magnets or ring magnets were used. The investigation also did not consider the effects of large
amplitude oscillations and damping.

4. General oscillations

Moving away from the simplifying assumptions in the previous section, a more general
investigation into oscillations with large amplitudes, complicated magnet geometries and
damping was conducted.

Since this investigation focuses on the geometry of the magnets and damping, another
experimental setup was used. The two small ring magnets E and F were threaded on a glass
rod attached to a wooden base. Magnet E was fixed at the bottom of the rod. A high-speed
digital camera was positioned in front of the setup, as shown in figure 6.

The slight difference between the inner diameter of the ring magnet and the diameter of
the glass rod results in the magnet slanting. The slanting of the magnet is a non-ideal part of
the setup that does not add any value to our investigation; thus, it was minimized through the
addition of a straw. The straw also reduced contact friction, allowing more oscillations to be
observed. When the magnet and straw slant, the top of the straw comes into contact with the
glass rod first. To prevent further slanting, the contact force with the glass rod must exert an
equal and opposite torque to the torque experienced by magnet F. The long straw increases the
moment arm of the contact force, thus reducing the force required for the same torque. Since
friction is proportional to the normal contact force, the contact friction is reduced too.

The suspended magnet was released from five different initial displacements at 5.0 cm
intervals, and a high-speed camera was used to record its motion at 600 frames s−1. Frame-by-
frame video analysis was performed to obtain an experimental graph of displacement against
time. A representative example of a graph obtained is shown in figure 7. Other graphs with
different initial displacements showed similar trends.

A general model that considers the geometry of the magnets and damping effects was
formulated. In classical electrodynamics, permanent magnetism can be represented as
equivalent currents (Griffiths 1999), as shown in figure 8. In uniformly magnetized cylindrical
magnets, all magnetic properties can be modelled with surface currents on the curved surfaces.
In the case of a ring magnet where two curved surfaces are present, the inner and outer surfaces
have currents of equal magnitude flowing in opposite directions.

The surface current density, Ks, is given by

Ks = M × n̂ (8)

where n̂ is the area unit vector of the magnet surface (which points radially outwards on
the outer magnet surface, and radially inwards on the inner magnet surface) and M is the
magnetization of the magnet, defined as the magnetic moment per unit volume.

We derived the force arising from the magnetic field of a fixed cylindrical current sheet
acting on another suspended current sheet, in the arrangement shown in figures 9(a) and (b).
Subscript 1 denotes the properties of the fixed current sheet, while subscript 2 denotes the
properties of the suspended current sheet.
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Figure 6. Experimental setup for the general investigation.

Figure 7. Experimental displacement against time graph of magnet F dropped from an initial
displacement of 30.0 cm.

The magnetic field generated by the bottom current sheet at the field point, shown in
figure 9(b), must first be found using the Biot–Savart law:

B = μ0

4π

∫
i1 dl × r

r3
(9)
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Figure 8. Uniformly magnetized permanent magnets and their equivalent representation using
surface currents.

(a) (b)

Figure 9. The model for two cylindrical current sheets.

where

i1 = |Ks1 |dz1 = |M1|dz1 (10)

is the infinitesimal current flowing in a ring element of height dz.
From figure 9(a), the geometry of the system gives

dl = r1 dθ

⎛
⎝− sin θ

cos θ

0

⎞
⎠ , (11)

r =
⎛
⎝r2 − r1 cos θ

−r1 sin θ

z0 + z1 + z2

⎞
⎠ (12)

and

|r| =
√

(r2 − r1 cos θ)2 + (−r1 sin θ)2 + (z0 + z1 + z2)2. (13)
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Thus,

dl × r = r1 dθ

⎛
⎝(z0 + z1 + z2) cos θ

(z0 + z1 + z2) sin θ

r1 − r2 cos θ

⎞
⎠ . (14)

Substituting equations (13) and (14) into the Biot–Savart law gives

Bx = μ0

4π

∫
i1r1(z0 + z1 + z2) cos θ

r3
dθ. (15)

This integral, however, only gives the magnetic field due to an infinitesimal surface current
i1 flowing in a ring element. To obtain the total magnetic field produced by the current sheet,
another integration has to be performed over the height of the magnet. At the field point, we
let the x axis be in the radial direction and the y axis be in the tangential direction. From the
symmetry of the system, By = 0. The radial component of the magnetic field is thus

Br = Bx

= μ0

4π

∫ π

−π

∫ h

0
|M1| r1(z0 + z1 + z2) cos θ

[(r2 − r1 cos θ)2 + (−r1 sin θ)2 + z2]
3
2

dz1 dθ (16)

where h is the height of the magnet.
Having obtained an expression for the magnetic field, the force acting on the suspended

current sheet can be calculated using the Lorentz force:

F = il × B (17)

where F is the magnetic force, i is the current in the conductor, l is the length vector in
the direction of the current and B is the magnetic field through the length. Hence, the total
magnetic force, FMagnetic, is

FMagnetic =
∫ h

0
|M2| dz2 · 2πr2 · Br

= μ0

4π

∫ π

−π

∫ h

0

∫ h

0
|M1||M2| r1(z0 + z1 + z2) cos θ dz1 dz2 dθ

[(r2 − r1 cos θ)2 + (−r1 sin θ)2 + z2]
3
2

. (18)

If the magnitudes of the magnetizations |M1| and |M2| are known, numerical integration
can be performed to evaluate the force between the two current sheets. The interaction between
ring magnets was modelled as the interaction between four current sheets.

To measure the magnetization of the magnets, a graph of magnetic field strength against
the distance from the magnet was obtained experimentally and compared with theory. The
axial magnetic field due to a ring magnet is (Pollack and Stump 2002)

Bz(z) = μ0|M|
2

(
h − z√

a2
1 + (h − z)2

+
z√

a2
1 + z2

− h − z√
a2

2 + (h − z)2
− z√

a2
2 + z2

)
(19)

where Bz is the axial magnetic field strength, μ0 is the permeability of free space, |M| is the
magnitude of the magnetization, h is the magnet height, z is vertical distance from the bottom
of the magnet, and a1 and a2 are the radii of the inner and outer current sheets, respectively.

A Hall probe (Pasco Hall Probe, model CI-6520, maximum field 0.2 T) connected to a
data logger was used to measure the axial field of a ring magnet at different displacements,
every 1 mm along the axis. To align the axis of the Hall probe with the axis of the ring magnet,
both the Hall probe and the ring magnet were inserted into a single plastic straw that is of the
same diameter as the Hall probe and the magnet. An experimental graph of magnetic field
against displacement was obtained, as shown in figure 10.
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Figure 10. Experimental graph of axial magnetic field strength against distance for magnet E.

Table 3. Magnetization of the magnets.

Inner Outer Thickness Mass Magnetization
Magnet Type radius (cm) radius (cm) (cm) (g) (kA m−1)

E Small ring 0.600 0.345 0.620 5.5 1010
F Small ring 0.600 0.345 0.620 5.5 1089

This graph was compared to equation (19) to determine values of magnetization through
curve fitting. Table 3 shows the magnetization of the magnets. With the magnetizations known,
the force between the magnets can be calculated by numerically integrating equation (18).

As a consistency check, the force between the two magnets was characterized
experimentally and compared with theoretical values calculated from numerical integration.
Weights of known masses were loaded onto the magnet and the distance between the magnets
measured. The comparison between the theoretical and experimental values is shown in
figure 11.

The magnetic force predicted by the general model agrees well with experimental values.
This ensures that the model is accurate. Apart from the restoring forces of magnetism and
gravity, damping due to air resistance and friction must also be taken into account. The effects
of eddy currents were neglected. This will be justified in the next section. The air resistance,
−k1ż, was taken to be proportional to the velocity, while the friction, −k2 ˆ̇z, was taken to be a
constant force acting in the opposite direction to velocity. Hence, the final equation of motion
is

mz̈ = FMagnetic − mg − k1ż − k2 ˆ̇z (20)

where k1 is the air drag coefficient, k2 is the magnitude of the average contact friction acting
on the oscillating magnet and ˆ̇z is the sign of the velocity. Given the initial conditions, this
equation can be numerically solved to obtain the theoretical displacement against time graph.
The theoretical graph alongside the experimental data is shown in figure 12.
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Figure 11. Comparison of experimental magnetic force between magnets E and F against
displacement with theoretical values.

Figure 12. Comparison of experimental displacement against time graph with theoretical
predictions for magnet F dropped from 15.0 cm.

A prominent feature of the oscillations is that they are nonlinear at large amplitudes. The
magnetic force changes much more rapidly as the magnets get closer than the equilibrium
displacement, giving rise to the nonlinearity of the oscillations.

The oscillations are clearly damped over time. The constants k1 and k2 were determined by
optimizing the resultant curves with the experimental data across all experimental runs. k1 was
found to be 2×10−3 N s m−1, while k2 was found to be 3×10−4 N. These values are physically
reasonable when compared to the magnet weight of 5.5 × 10−2 N, since experimental data
suggest that the damping forces are small compared to the magnet weight, but still have a
significant impact after a few oscillations. The envelope of damping is neither exponential (as
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Figure 13. Graph of induced EMF against time for magnet F dropped from 30.0 cm.

would be expected if only air resistance were present) nor linear (as would be expected if only
friction were present). This shows that air resistance and friction are approximately the same
order of magnitude, in agreement with the optimized values.

Generally, a good fit between theory and data was observed during the first few oscillations
of the magnet. However, as the oscillations continue, the theoretical predictions begin to
deviate from experimental data. Comparing across the different experimental runs, this
deviation appears to be random. The theoretical predictions did not produce consistently
higher/lower amplitudes or longer/shorter periods. Thus, the deviations are probably due
to chaotic factors in the setup. A possible source of chaos is the wobbling of the magnet
due to the imperfect fit between the ring magnet and its guide. This can affect the contact
friction, resulting in unpredictable variations from the constant force used to formulate the
model. Given a long time over which to act, these effects caused the deviations seen in
later oscillations. Such effects are non-deterministic and cannot be easily accounted for
theoretically.

5. Effects of eddy currents

Here we justify our earlier claim that eddy currents are negligible. Eddy currents are generated
by a changing magnetic flux. The induced EMF can be calculated from Faraday’s law:

|ε| = d�B

dt
= A

dB

dz

dz

dt
= πa2

1
dB

dz

dz

dt
(21)

where �B is the magnetic flux through the oscillating magnet, A is the area of the oscillating
magnet and a1 is the outer radius of the oscillating magnet. The graph of induced EMF against
time can be evaluated for the oscillation started at 30.0 cm, where the effects of eddy currents
are expected to be the greatest. The graph produced is shown in figure 13.

Figure 13 shows that the maximum magnitude of the induced EMF is of the order of
40 mV. The resistance, R, of the magnet was measured to be 1.2 � through the use of a
Soundtech Electronic EM390 multimeter. From this, the energy dissipated due to the eddy
current can be approximated as

Edissipated ≈ ε2

R
�t (22)
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where �t is the width of the peak shown in figure 13. From figure 13, it is observed that the
induced EMF comes in sharp peaks and provides a physical justification for these estimations.
These sharp peaks allow us to estimate the energy dissipation from the peaks alone, while
safely neglecting the induced EMF for other parts of the motion. Carrying out the calculations,
the energy dissipated in the highest pair of peaks is about 3 nJ, roughly 0.1% of the energy
of the slowest moving magnet. This should not be surprising given the low velocity of the
magnet and its relatively high resistance. Thus, it can be safely concluded that eddy currents
do not have a significant impact on the oscillations.

6. Conclusion

The vertical oscillations of coupled magnets yield a number of interesting relations despite
their simplicity. We first studied small amplitude oscillations, and found that the oscillation
frequency varies only with the eighth root of magnet properties such as their magnetization and
mass. Deviations from the formulated model were attributed to the geometry of the magnets.
Using numerical methods, a more general investigation took into account the geometry of the
magnets, oscillations of large amplitudes and damping effects. The theoretical predictions
from the general model fitted well with experimental observations within experimental error.

Acknowledgments

We would like to thank Dr Yeo Ye (National University of Singapore), Mrs Theresa Lai, Mr
Mark Wee and Dr Tan Guoxian (Raffles Institution, Singapore), Mr Daniel Lo Yiu Wah and
Mr Gao Guangyan for their tremendous help and support during our experiments and for the
IYPT.

References

Geim A, Simon M, Boamfa M and Heflinger L 1999 Nature 400 323–4
Griffiths D J 1999 Introduction to Electrodynamics (Englewood Cliffs, NJ: Prentice-Hall)
Haines C and Michaelis M 1989 Phys. Educ. 24 359–64
Heddle D W O 1970 Phys. Educ. 5 244–5
Moloney M J 2008 Am. J. Phys. 76 125–8
Pollack G L and Stump D R 2002 Electromagnetism (Reading, MA: Addison-Wesley)

http://dx.doi.org/10.1038/22444
http://dx.doi.org/10.1088/0031-9120/24/6/008
http://dx.doi.org/10.1088/0031-9120/5/4/006
http://dx.doi.org/10.1119/1.2820394

	1. Introduction
	2. Materials
	3. Oscillations with small amplitudes
	4. General oscillations
	5. Effects of eddy currents
	6. Conclusion

