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Axisymmetric problem satisfying laplace's equation :

( no ( - dependence in the equation : (2V/(r2 + 1/r (V/(r + (2V/(z2  = 0 ) 
All derivatives evaluated at the center of the cell(r,z).   r = a  and z = b .

A taylor series expansion gives

V(r+a,z+b) = V(r,z) + a (V/(r + b (V/(z + ab/2 (2V/(r(z + a2/2 (2V/(r2 + b2/2 (2V/(z2 .

+ higher terms in a and b.  In slightly different notation we have

V(r,z+b) = V(r,z) + b V/z + b2 (2V/(z2  = Vo + b Vz + 1/2 b2 Vzz . 

V(r,z-b)  = V(r,z) - b V/z  + b2 (2V/(z2 = Vo   - b Vz + 1/2 b2 Vzz . 

Then Vzz = ( V(r,z+b) + V(r,z-b) - 2Vo)/b2 .

V(r+a,z) = V(r,z) + a V/r  + a2 (2V/(r2 + ...  =  Vo + aVr + 1/2 a2 Vrr + ..

V(r-a,z) = V(r,z)  - a V/r   + a2 (2V/(r2 + ...   = Vo  - aVr + 1/2 a2 Vrr + ..   .

Then we find

Vr = (V(r+a,z)-V(r-a,z))/(2a),   and 

Vrr = (V(r+a,z)+V(r-a,z) - 2 Vo)/a2 .

Since Laplace'e equation with no phi dependence is 

Vrr + 1/r Vr + Vzz = 0,  we have

 0 = (V(r+a,z)+V(r-a,z) -2 Vo)/a2 +1/r (V(r+a,z)-V(r-a,z))/(2a)  +(V(r,z+b) + V(r,z-b) - 2 Vo)/b2 .

This can be solved for Vo:

Vo ( 2/a2 + 2/b2)= (V(r+a,z)+V(r-a,z))/a2 +1/r (V(r+a,z)-V(r-a,z))/(2a) +( V(r,z+b) +V(r,z-b))/b2 .

When we are away from r = 0 and z = 0 we have

Vo = Crr (V(r+a,z)+V(r-a,z)) +Cr/r (V(r+a,z)-V(r-a,z)) + Czz (V(r,z+b)+V(r,z-b))  , 

where the constants Crr, Cr, and Czz are

       Crr = 1/2 b2/(a2 + b2),            Cr = 1/4 ab2/( a2 + b2),   and          Czz = 1/2 a2/( a2 + b2) .

At r=0, catastrophe?  If Vr(0) (0, then at r=0   Vr/r definitely blows up.  For Laplace's equation to hold,  Vr(0) = 0.  Now let s equal the radial distance from the z-axis and  taylor-expand Vr:  (s<<1)
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Vr(s) = Vr(0) + s Vrr(0) + higher powers of s,

 and since Vr(0) = 0, we have Vr(s) = s Vrr(0) + ...    . Laplace's equation at s is  

Vrr(s) + 1/s( Vr(0) + s Vrr(0)) + Vzz(s)  .  Now using Vr(0) = 0 we see that for tiny s near r=0 we are ok because  the limit of s(0 gives Vrr(0) + Vrr(0) + Vzz(0)  = 0 , or 


2 Vrr + Vzz = 0

Another way to deal with r=0 is to sit on the z-axis and write Vxx + Vyy + Vzz = 0.

Since we are at r=0, an x-derivative is identical to a y-derivative and also identical to an r-derivative. This means that Vxx = Vrr = Vyy.  Then Laplace's equation becomes 


2 Vrr + Vzz = 0  at r=0.

At r=0  we have  V(0+a,z) = Vo + 0 + 1/2 a2 Vrr,    so Vrr = (2/a2) (V(0+a,z)- Vo) .

At r=0 for   2Vrr + Vzz = 0, we find

0 = 2 (2/a2) (V(0+a,z)- Vo) + ( V(0,z+b) + V(0,z-b) - 2 Vo)/b2 .   Then Vo is found to be

Vo = [(4/a2)V(0+a,z) + (V(0,z+b) + V(0,z-b))/b2]/[4/a2 + 2/b2] .   Or  at r=0
Vo = Cro V(0+a,z) + Czo (V(0,z+b) + V(0,z-b)),   where


Cro = 2b2/(a2+2b2)       and Czo = 1/2 a2/(a2+2b2)  .

At z = 0.  Where we have symmetry in the z-axis, like z=0 in the mid-plane of a cylindrical pipe, V(r,z) = V(r,-z), and Vz(r,0) = 0. Using the taylor expansion for V(r,0+b) and V(r,0-b), we find 

Vzz(r,0) = 2 (V(r,0+b) - Vo)/b2 .  Therefore at z = 0


Vo = Crr (V(r+a,0)+V(r-a,0)) +Cr/r (V(r+a,0)-V(r-a,0)) + 2Czz V(r,0+b) .

At r=0 and z = 0, we solve 2Vrr + Vzz = 0.  V(0,0+b) = Vo + 0 + 1/ 2 b2 Vzz, and 

Vzz = (V(0,0+b)- Vo) (2/b2),   and    Vrr = (2/a2)(V(0+a,0)- Vo) . Thus

0 = 2 (2/a2)(V(0+a,0)- Vo) + (V(0,0+b)- Vo) (2/b2) . Then 

Vo = [ 4/a2 V(0+a,0) + 2/b2 V(0,0+b) ] / [4/a2 + 2/b2] .  Therefore

Vo = Cro V(0+a,0) + 2Czo V(0,0+b) .

