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Side branch in a duct

WWM Section 9.4 A 1-D wave travels down a duct.

It encounters a number of branches



      y

and at each branch there is




             Ab    Abr
a reflected and a transmitted

portion of the wave.
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The incident pressure is 


pi = A1 exp(i(t-ikx) + A1r exp(i(t+ikx), 

the transmitted pressure is


pt = A2 exp(i(t-ikx) + A2r exp(i(t-ikx), 

and the pressure in the branch is (omitting the exp(i(t) factor )


pb = Ab exp(-iky) + Abr exp(iky) .

The x-direction runs along the duct axis, and the y-direction runs up and away from the branch junction. We will take the junction to be at x = a, and y=0.

We obtain the velocity from -(p/(x = ( (v/(t  in the duct, and in the branch we use -(p/(y = ( (v/(t.

The waves all have exp(-i(t) time dependence, so (v/(t =-i(v. Then we can write the velocities (u) by taking derivatives of the pressure expressions and simplifying slightly


ui = (A1 exp(-ika) - A1r exp(+ika) )/ (c


ub = (Ab exp(-ik(0) - Abr exp(ik(0) )/ (c


ut = (A2 exp(-ika) - A2r exp(+ika) )/ (c

Letting f  = exp(-ika) we can write


ui = (A1 f - A1r /f )/ (c


ub = (Ab - Abr)/ (c


ut = (A2 f - A2r /f )/ (c

Now we equate all three pressures at x = a and y=0  (remembering f = exp(-ika) ):


A1 f + A1r /f = Ab + Abr = A2 f + A2r/f  .

Then we set the incoming volume flow rate (U = S u, where S is the cross-sectional area ) to the sum of the outgoing flow rates


Ui = Ub + Uf

S1 ( A1 f - A1r /f) = Sb ( Ab - Abr) + S2 (A2 f - A2r/f)

We want to be able to plug in a 'specific acoustic impedance' zbo for the branch, no matter what it is, so we write it down

(0)
zbo = branch pressure/branch velocity (at y=0) = (c ( Ab + Abr)/(Ab - Abr)

Now we eliminate the branch parameters Ab and Abr in favor of zbo, and A2 and A2r: and find

(1)
A1 f + A1r /f =  A2 f + A2r/f  .
(pressure)


Ab + Abr = A2 f + A2r/f  .          (pressure)


S1 ( A1 f - A1r /f) = Sb (c/zbo ( Ab + Abr) + S2 (A2 f - A2r/f)
(vol flow rate)


S1 ( A1 f - A1r /f) = Sb (c/zbo (A2 f + A2r/f) + S2 (A2 f - A2r/f)


A1 f - A1r /f  = (Sb/S1 (c/zbo) (A2 f + A2r/f) + S2/S1 (A2 f - A2r/f),  or

(2)
A1 f - A1r /f  = A2 f (S2/S1 + (Sb/S1 (c/zbo) ) + A2r/f ( Sb/S1 (c/zbo - S2/S1 ).


Using the abbreviations (12 = S2/S1, and (1 = Sb/S1 (c/zbo,  we can write (2) as

(3)
A1 f - A1r /f = A2 f ((12 + (1) + A2r/f ((1 - (12 ).

Solving (1) and (3) for A1 by adding them gives

(4)
A1 = 1/2 [A2 ( 1+ ((12 + (1) + A2r (1 + ((1 - (12)/f2 ].

And subtracting gives

(5)
A1r = 1/2 [A2 ( 1- ((12 + (1) f2 + A2r (1 - ((1 - (12 ) ] .

We could regard (4) and (5) as a matrix equation with column vectors 

(1 = (A1, A1r) and  (2 = (A2, A2r)   connected by a matrix  : (1 = (12 (2   , where (12  is given by

    





 1+ (12 + (1

  (1 - (12 +(1 )/f2   


(6)

(12 = 1/2  
  


                            





( 1- (12 - (1) f2 
    1+ (12 - (1       


 [ (12 = S2/S1, (1 = Sb/S1 (c/zbo ,   and f  = exp(-ika)  ]
When we go on to the next branch in the duct, and match up the pressure and volume flow rate. Then A2 and A2r, will get related to A3 and (if it existed) A3r. There would then be another matrix equation we could write down:


(2 = (23 (3   .

The two matrix equations could be joined, to give


(1 = (12 (2  =  (12  ((23 (3)  = ((12  (23) (3 = (13  (3.

The transmission coefficient in this situation involves A3 and A1. In particular

(7) 
T =  z3/z1 |A3/A1|2  .

From the overall matrix equation we have A1 = ((13)11 A3 + ((13)12 A3r .
Where there is no reflection, A3r = 0, and  A3/A1 = 1/((13)11   Thus it is possible to construct an overall matrix (if for a multi-branched duct, and compute a transmission coefficient (zf is the final specific acoustic impedance, and zi is the initial specific acoustic impedance)


(8) 
T = zi/zf /|((if)11|2 .
Multiple branches or sections 

If there's no branch then 1/zbo = 0 because there is no branch velocity, meaning that (1 = 0. 

If the area changed, then (12 would not be zero. 

In the case of a single branch, we have (assuming zf = (c = zi) from Eq. (4) or (6) and (8)


T12 = |A2/A1|2 = 4/|1+ ((12 + (1)|2 = 4/|1+ S2/S1 +Sb/S1 (c/zbo|2 .

If S2/S1 = 1, then we have


(9)
T12  = 1/|1+ Sb/(2S1) (c/zbo)|2 .

This means we can calculate the transmission past a single branch of any sort if we know its acoustical input impedance zbo.  (For a series of 'branches', we must fall back on the matrix multiplication.)

Acoustical input impedances zbo for various side branches.

Closed side branch.  A side branch of length L



      L

is closed at y = L, so the velocity there must be zero.



(10)
u(L) = (Ab exp(-ikL) - Abr exp (ikL) )/(c = 0

From Eq (0)


(11)
zbo = (c ( Ab + Abr)/(Ab - Abr) = (c ( Ab/Abr +1)/(Ab/Abr -1)

and when we combine (10) and (11) we find, after collecting and simplifying


(12)
zbo (closed side branch)  = -i(c cot (kL).                                   [cf. WWM p. 271]
Then putting (12) into (9) we find


T (closed side branch) = T12  = 1/(1+ (Sb/(2S1))2 tan2 kL ).

Eq 9.25, p. 271

It is claimed that tube resonances occur when the input impedance vanishes. For a tube driven at one end and closed at the other, we should then get resonances at kL =  odd (/2. This corresponds to L equalling an odd number of quarter wavelengths, and that is the condition for resonance in a tube closed at one end and open at the other. [The idea is that we are driving the tube at the open end, y=0.]

An 'open' side branch (tube with a hole at the end, or a hole in a pipe )

Great minds have worked out the acoustical impedance of a circular hole of radius a :


zhole/((c) = (ka)2/4 + 0.6 i ka

(at the end of a long tube: unflanged [Levine and Schwinger])

zhole/((c) = (ka)2/2 + 0.85  i ka
(long tube with a flange at the end; often a shallow hole in a pipe)
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zhole/((c) = (ka)2/2 + 0.85 i ka



zhole/((c) = (ka)2/4 + 0.6 i ka


We are interested in the regime where ka << 1, so we will throw away the leading term of zbo and keep the next one. This makes zhole pure imaginary for a hole when ka<<1:


zhole/((c) = i b ,      where  b = 0.85 ka (flanged pipe),  or b = 0.6 ka  (unflanged pipe)

zhole = phole/uhole  at y=L . We use the expressions from p. 1 for pb and ub, setting y = L ;


zhole = (c [ Ab exp(-ikL) + Abr exp(ikL) ]/ [Ab exp(-ikL) - Abr exp(ikL)  ] .

This can be expressed as


zhole/((c) = ( r+1)/(r-1),

where r = (Ab/Abr)exp(-2ikL) .  We solve this for r to obtain (remembering that zhole/((c) = i b)


r = (Ab/Abr) exp(-2ikL) = (zhole/((c)  + 1)/(zhole/((c) -1) = -(1+ib)/(1-ib)

Noting that b is a small quantity, we can say 1/(1-b) ( 1+b, so -(1+ib)/(1-ib) becomes -(1+2ib).

Then we recall that exp(x) = 1+x+ x2/2! , etc, and recognize -(1+2ib) ( -exp(2ib) . Then r becomes


r = Ab/Abr exp(-2ikL) = (zhole + 1)/(zhole-1) ( -exp(2ib).

This means  Ab/Abr = -exp(2i [kL+b]). Now we use this in (6) to find the input impedance zbo

zbo/((c) = (Ab/Abr + 1)/(Ab/Abr - 1) .


zbo/((c) = (-exp(i(kL+b) + exp(-i(kL+b))/( -exp(i(kL+b) - exp(-i(kL+b)).


(13)
zbo/((c) .= +i tan (kL+b).

open side branch, length L,  ka<<1

Then the transmission coefficient at an open side branch is then, from (9) 


T = 1/(1+ (Sb/(2S))2 cot2 (kL+b) ) .     [ open side branch, ka <<1 ]

The claim is that we obtain resonances in pipes when zbo = 0. You should get resonances when  cot kL = 0, or when kL is an odd multiple of (/2. This leads to resonances when the pipe length is (/4, 3(/4, etc.

We might regard this open side branch as an independent open pipe driven at y=0, and open at y=L. We should expect resonances its input impedance is zero.  From (13), tan (kL + b) = 0, or when 


kL+ b = (, 2(, etc.

For an unflanged pipe b = 0.6 ka, so that


k(L+0.6a ) = (, 2(, etc.

This corresponds to an ‘effective length’ Leff = L+0.6a such that resonance occurs when


Leff = L + 0.6a = (/2, (, 3(/2, etc.

That is, there is an additional length of 0.6a needed to account for the air moving in and out of the open end of the pipe.

Helmholtz resonator as a side branch.


A helmholtz resonator in simplest terms is a volume

with a small opening in it (a hole or neck of some kind).

Its behavior resembles a mass-spring system, with a mass

of air in the neck oscillating in and out of the volume, 

with the bulk of the volume acting as a spring.

Now we work out the specific input impedance zbo of a helmholtz resonator. With it, we can 

use (9) to find the transmission coefficient.

The equation of motion of the air in the neck of the resonator is like that of a damped driven oscillator. The pressure at the mouth of the resonator is (the radius of the neck of the resonator is a)


p = A exp(i(t),

and the equation of motion of the air in the neck is


m (2y/(t2 + R (y/(t + k y  = A (a2 exp(i(t) ,

where A is the pressure amplitude at the mouth of the resonator, and R is the damping coefficient. From this equation we find


y = A (a2 exp(i(t)  / [ (k-m(2) +i(R],

and the velocity in the neck is  ( in a minute we will use k  =m (o2  )


uy = i( y  = i( A (a2 exp(+i(t)  / [ (k-m(2) +i(R].

The specific acoustic impedance at the opening is


zbo = p/u = i[ (k-m(2) +i(R]/[ (a2 (],   

or

(14)
zbo = (R +i (m/()((o2 - (2)) /((a2) .

With (14) in (9) we have

(15)
Thelmholtz resonator  = 1/|1+ {Sb/(2S1) ((c (a2)/[R +i (m/()((o2 - (2)]} |2 .

If R = 0, T =0 at the resonant frequency of the resonator, ( = (o .

Average power dissipated due to viscous losses from an oscillating velocity of amplitude vo near a plane surface of area As is given by

(16)
<Pwall> = 1/4 ((( vo2 As,

where ( = ((2(/(), and (= kinematic viscosity of air = 1.5 x 10-5 m2/s .

Now for a force Fy = -Rvy = -R vo exp(i(t), we have the average power

(17)
<P>  = < Fy vy >  = R <vy2> = 1/2 R vo2  .

From (16) and (17) we can conclude the force of viscosity is represented by


R = 1/2  ((( As .

For a cylindrical neck of length L and radius a, As = 2(aL, and the volume is V = (a2 L. With m=(V, we can write for (14)

(18)
zbo = (1/2  ((( 2(aL +i (((a2 L /()((o2 - (2)) /((a2) ,        or


(19) 
zbo = L(( (( /a +i (((o/()2 - 1))  .
[resonator of neck length L, radius a]

At 200 Hz, ( is about 1/5 mm so (/a is a lot less than 1. We are interested in (c/zbo, so


(20)
(c/zbo   = 1/( Lk (( /a +i (((o/()2 - 1) )    =>  if R=0,  zbo/(c = i Lk (((o/()2 - 1  )
From (20) we get

(21)
Thelmholtz resonator  = 1/|1+ (a2/(2S1) /[ Lk (( /a +i (((o/()2 - 1)   ] |2 .

This is of the form T = 1/|1+ c1/(c2 + ic3)|2, or  


T = (c22 + c32)/((c1+c2)2 + c32), with


c1 = (a2/(2S1),

c2 = Lk ( /a,  

and  c3 = (((o/()2 - 1)2 


Then (21) becomes

(22)
Thelmholtz resonator  = ( (Lk ( /a)2 + (((o/()2 - 1)2 ) / ( ((a2/(2S1)+ Lk ( /a)2 + (((o/()2 - 1)2) .

Transmission Matrix (12 with a side branch and S2=S1.

We might want to calculate transmission through a series of side branches where the main branch area doesn't change. Then (12 = S2/S1 = 1. For a branch at x = xo
    





[ 1+ (12 + (1

  (1 - (12 +(1 )/f2  ] 


(6)

(12 = 1/2  
[  


                            ]





[( 1- (12 - (1) f2 
    1+ (12 - (1       ]

so that   (1 = (12 (2   .
 [ (12 = S2/S1, 
(1 = Sb/S1 (c/zbo ,   and f  = exp(-ikxo)  ],

and zbo for the branch.  Suppose the side branch is a circular tube of radius a, and the main branch area is S. For either a closed or open side branch, ( is pure imaginary, (let (1 = iB) then we have





[ 2 + iB

  iB/f2  ] 


(23)

(12 = 1/2  
[  


           ]





[ -iB f2 
    
2 -iB   ]

The real and imaginary parts of (12  are


Real:

1       

-B/2 sin(2kxo)
    Imag:   
B/2


B/2 cos(2kxo)



-B/2 sin (2kxo)
 
1


-B/2 cos(2kxo)

-B/2

where 


B = (a2/S tan kL, 


closed tube, length L


B = -(a2/S cot(kL+0.6a)  

open tube length L, unflanged 


B = -(a2/S /[ kL(((o/()2 - 1)]

helmholtz resonator, neck length L, neck radius a

Transmission Matrix (12  with no side branch and S2  ( S1.  Now (1 = 0 and (12 ( 0.

The real and imaginary parts of (12  are 



Real





       Imaginary


(1+(12 )/2

(1-(12 )/2 cos(2kxo)

0


+(1-(12)/2 sin(2kxo)

(1-(12 )/2 cos(2kxo)
(1+(12 )/2


-(1-(12)/2 sin(2kxo)
0

In general, to deal with either expansion/contraction regions, or side branches, we have


  real part

(1+(12 )/2



(1-(12 )/2 cos(2kxo)  -B/2 sin(2kxo)




(1-(12 )/2 cos(2kxo) -B/2 sin (2kxo)
(1+(12 )/2


imaginary part:
B/2




+(1-(12)/2 sin(2kxo)+ B/2 cos(2kxo)




-(1-(12)/2 sin(2kxo) -B/2 cos(2kxo)
-B/2

The real part is symmetric and the off-diagonal imaginary terms are antisymmetric.

