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RK2 calculation of a 1-D pipe or duct.
MJM


January 25, 2006         rev 3

This whole scheme was first written up and worked out by Ian Johnston in the American Journal of Physics, p. 996 Nov 1993.

We know from F = ma that

(1)
-(p/(x = ( (u/(t

and from conservation of mass that

(2)
div ((u) = -((/(t .

From the definition of bulk modulus B  = -(P/((V/V) we found that the acoustic pressure p equalled

(3)
p = B s,

where s is the 'condensation' s = (( - (o)/(o .

We assume a travelling wave of the form  

p = A exp(ikx - i(t) and 

u = B exp (ikx-i(t) . 

From these formulas we can evaluate the time derivatives  (p/(t = -i(p,  and (u/(t = -i(u . 

Then from Equation (1) we obtain the numerical approximation

(4)
(p = -(x (-i((ou).

Since we want equations in terms of the volume flow rate U = Su, we can write

(5)
(p = i (((x/S  U.

From the linearized 1-D equivalent of Eq. (2) we have

(6)
(u/(x = - (((/(t)/(o = -(s/(t .

From (3) we can substitute for s in terms of p, and use (p/(t = -i(p. This will let (6) turn into the approximation

(7)
(u = (x i(/B p .

Finally one wants (7) in terms of volume flow rate U = Su and we have

(8)
(U = (x i(S/B p


The two numerical approximation equations (5) and (8) will enable us to numerically integrate our way along a 1D pipe, and by varying the frequency find resonances in the pipe. 

When we encounter a hole in the pipe or a side branch, we can handle it by utilizing its impedance Z or admittance Y (Y = 1/Z ). Specific acoustic impedance is z = p/u, and from this u = p/z. For volume flow rate through a branch of specific impedance z is given by U = uS = pS/z and this additional flow rate must be accounted for in Eq. (8):

(9)
(U = p [ i(S(x /B + Sbranch/zbranch] .

Eq (9) now lets us include side branches (holes and maybe other things) in looking for resonance in the main tube. Next we substitute the bulk modulus of air B = (Pa ( ( = 1.4, and Pa = 1.01 x 105 Pa)

 (10)
(U = (x p [ i(S /((Pa)+ Sbranch ybranch ].


The impedances z and admittances y will be pure imaginary for holes, so we will let 



ybranch  = iy,    and

(10')
(U = i (x p [ (S /((Pa)+ Sbranch y].


Now, we will take as a new variable Ui = iU.  Then our variables are

(11)

p = A exp(ikx - i(t) 
and 

Ui = i U = i Su = i S B exp (ikx-i(t) , 

Putting these into Eqs (5) and (10') we have


(5')

(p = (((x/S  Ui,    and 

(10'')

(Ui = - p  [ (x S(/((Pa) + Sbranch y ].

The Runge-Kutta 2nd order scheme (RK2) starts by a half-step down the tube (a branch is present):


p(x+(x/2) = p(x) + Ui(x) {((x/2) ((/S(x)},   and


Ui(x+(x/2) = Ui(x) - p(x) {((x/2) S(x) (/((Pa) + Sbranch ybranch } .

Then in the RK2 scheme, we use the derivatives at the half-step to advance a full step from where we originally started.  (with a branch present, otherwise omit Sbranch ybranch term)


p(x+(x) = p(x) + Ui(x+(x/2) {(x ((/S(x+(x/2)},   and


Ui(x+(x) = Ui(x) - p(x+(x/2) {(x S(x+(x/2)(/((Pa) + Sbranch ybranch }.

Then we repeat this leapfrogging process on down the line. 

A pipe whose area S doesn't change is a simple example to illustrate how things go. 

Distance x is in column A, with each row advancing by (x.  

In column B we have pressure p(x) at a full step.  

Column C has Ui(x) at a full step. 

Column D contains pressure p(x+(x/2) advanced a half step, and 

Column E has Ui(x+(x/2) advanced by half a step. 

This is all on one row.  The values in D and E are calculated from columns B and C of the same row. 

To fill in p(x+(x) in the next row, we use values from columns D and E of the previous (half step) row. After this, the process is repeated.  

We leave column F empty, except where we want to place a side branch or hole. In column C (and perhaps also column E) we would make sure to have the code read

(11)
Ui(x+(x) = Ui(x) -  [ (x S(x)(/((Pa)  + Sbranch(x) y(x)] p(x+(x/2) .


Most of the time Y = Sbranch y in column F will be zero, but when a hole shows up the flow rate jumps a bit, and there is a change in the slope of the pressure curve.

When the tube is open at both ends, we start with no excess pressure ( p(0) = 0) at one end and some nominal volume flow rate (U(0) = 1 ) .  When we get to the far end of the tube, the pressure must again be zero. We adjust the frequency with a scroll bar to find those frequencies where resonance occurs. This is done by watching the graph and also showing the pressure at the far end.

A hole in the side of a pipe acts like an additional place where air can flow. The flow rate U will have two terms at a hole, one down the pipe, and one out the hole. For a long pipe with a flanged hole at the end, at wavelengths much larger than the hole radius, we found earlier that zhole/((c) = i 0.85 ka . For an unflanged hole at the end of a long pipe the factor is 0.61 instead of 0.85. These factors account for air 'spreading out' when it leaves the long pipe. But for a hole in the side of a pipe, the 'spreading' in flow occurs on both sides of the hole, so one must think in terms of spreading out on each side. In a woodwind instrument the hole is not completely flanged. The right thing for the hole in the side of a pipe is going to have a factor around twice (for spreading out on both sides) the average of 0.61 and 0.85. Ian Johnston quotes a paper by Keefe on woodwinds and gives a value of 


z tone hole/((c) ( i 1.4 ka .

(This neglects the thickness t of the hole as  part of the impedance.)

The extra term in Eq. (10'') or (11) is then Sbranch Y (x), where  ybranch = iy.  For ybranch we have


ybranch = 1/z = i y = -i /(1.4 ka (c)

So   yhole = -1/(1.4 ka (c),  and for a circular hole of radius a  (using kc = ()



Yhole = Sbranch yhole = -(a2/(1.4 (( a ) = -a/(2.8 f () 

This is the extra term to be added in when a hole occurs. The density of air varies somewhat with temperature, so temperature variations could be added in to the spreadsheet if necessary.

We can write the formula for Y = Sbranch yhole in a cell at the top of the spreadsheet, then reserve an empty column for the presence of holes, and enter the value wherever a hole occurs.  

Then the flow rate equation becomes

(13)

Ui(x+(x) = Ui(x) - ((x) [ (x S(x)(/((Pa)  +Y(x)] p(x+(x/2) .

If (x  = 1 mm in the spreadsheet, and the hole radius is 3mm, how does one put the hole in? Since Yhole gives the flow through the hole, it should only go in once. Or else we get Yhole per (x and then enter it for several (x. This is something to be sorted out by trial and error.  The same goes for the effect of hole thickness on Yhole. There must be some effect of the thickness, and I have used the recipe (I forget how I got it or worked it out)


Y = Sbranch yhole  = -a2/[(a+t/1.4)(2.8 ( f)],

where t is the pipe thickness.

Summary.    

In cells at the top of the spreadsheet (for a  cylindrical pipe of fixed area) we could store the quantities


( (to be set by a scroll bar)
      A = (x ((/S
B = (x S(/((Pa)

Yhole
Columns and their contents


A

B

C

D

E

F



x
         p at x              Ui at x           p at x+(x/2       Ui at x+(x/2       Yhole as needed

for B    p(x+(x) = p(x) + A Ui(x+(x/2)     

for C   Ui(x+(x) = Ui(x) = -p(x+(x/2) {B + Y}

for D   p(x+(x/2) = A/2 Ui(x)

       

for E    Ui(x+(x/2) = Ui(x) - p(x) {B/2 + Y}

For other side branches:


closed tube



z = -i (c cot kL


open tube, length L, radius a

z = i (c tan (kL + b);   b = .6 ka unflanged, .85 ka flanged


helmholtz resonator (neglecting viscous losses)
z = i ((c kL)((2/(o2 - 1)  L = neck length

If the pipe area varies, we would need columns for radius and area down the pipe. The effective length of a pipe unflanged and open at one end is longer than its physical length by about 0.6 radii.

Ideas


check reflections and standing waves in pipe with sudden area change


put a helmholtz resonator on a pipe and examine the behavior (notch filter)


print a copy of Johnston's paper

