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Meeks section 4.5 Thin Beam or Rod




p


Consider a thin beam supported by two knife

  x

edges at each end, and having a load W in




 W

the middle. The bar width is w, and its height is h.

The weight of the beam is considered to be negligible.

The y-forces at each end equal W/2 upward.

At any point p at a distance x along the bar, we can consider the segment of bar between the left end of the bar and point p. This segment is a distance x long, and at its left we have Fxo = 0, Fyo = W/2. The forces exerted on this segment at point p will be distributed over its face, and may be summed into a net force Fx, Fy, and a bending moment M. 

For translational equilibrium of this segment, Fx = 0,  and Fy = -W/2 (exerted at point p).

For rotational equilibrium, M = Wx/2, exerted at point p. (The moment from the left end with respect to point p is -Wx/2, because it is clockwise, and CCW is taken to be positive for moments.


For slight bending of the beam due to 

the load, the beam shape is basically

the arc of a circle. Along the mid-line 

of the beam, the length L of the beam is 

unchanged. The circle radius to the mid-

line of the beam is R, and is indicated

in the sketch to the right. The bent beam

then subtends an angle ( = L/R. 





            R

Cross-section

of the bar

                         mid-line


       h




 r





         w

There is a positive strain for r extending below the mid-line of the bar:


strain = (L/L = [(R+r) ( - R (]/[R(] = +r/R        ( r is taken positive below the mid-line)

This strain is positive below the midline and negative above the midline, where the bar is shortened.

The stress is   stress = Y (strain) = dF(r)/dA, where F(r) is the force exerted at r. Since the strain is r/R, we have  

dF(r) = Y r/R dA. 

The bending moment about the mid-line is the sum of all   r dF(r) values (moment = force x arm )


M = ( r dF(r) = ( r (Y r/R dA) = Y/R ( r2 dA .

A lot of times the radius of gyration ( of the bar is defined as (2 =(1/A) ( r2 dA . Dr. Meeks on p. 152 calls it ( , but I'm going to call it (. then the moment reads


M = YA/R {(1/A) ( r2 dA },  or

(0)
M = YA (2/R .

  For a rectangular bar of width w and height h, the integral is


(2 = 1/(wh) -h/2(h/2  r2 w dr = (1/h) 1/3 [(h/2)3 - (-h/2)3] = h2/12 .  [ See p. 125 ]

For a circle of radius a, the integral is  (letting y play the role of r, and x be the width )


(2 = 1/((a2) ( y2 dA , where dA is dx dy, a small rectangular area.

But over a circle, ( y2 dA must equal ( x2 dA, since the directions are equivalent. 

Then because r2 = x2+ y2,   (circle y2 dA = (circle (r2/2) dA = 0(a (r2/2) 2(r dr = (a4/4.

This means for a circular cross-section that


(2 = ((a4/4)/((a2)  = a2/4.

Dr. Meeks points out on p. 152 that one should use ( = a/2 for a rod of circular cross-section, and as  noted earlier, use (  = h/(12 for a rectangular rod of height h and width w.

Dr. Meeks argues that for a very large radius of curvature R we can write


1/R = (2y/(x2  .

{For justification, see end of this document.} Using this, we obtain from Eq. (0) for the moment M 

(1)
M = Y wh3/12 (2y/(x2    for a rectangular bar.


Eq. 4.18 p. 125

Now we move to page 149 to finish obtaining the wave equation for flexural vibrations. 

(Next page)

(p. 149, ff) We consider a little section of the rod subject to forces and moments across each of its faces





-Fy(x)      Fy(x+(x)




   -M(x)
            
         M(x+(x)




          x
     x+(x

For translational motion in y, we sum the y-forces to equal (m (2y/(t2 . Notice that Fy acts on the right-hand face of the element, so the lefthand face of this same element will be exerting a force of Fy on the element to its left. That means the lefthand face will feel the opposite, reaction force -Fy on the lefthand face. That's why we have -Fy(x) on the lefthand face. Same thing for moments M, showing a positive CCW moment on the RH face and a negative moment -M on the LH face.


( Fy = Fy(x+(x) - Fy(x) = (m (2y/(t2 .

Because (m = ( A dx, we can write


( Fy = Fy(x+(x) - Fy(x) = ( A dx (2y/(t2 .

Dividing by (x on both sides and taking the limit as (x(0 we arrive at


(2)
(Fy/(x = ( A (2y/(t2 

(for translational motion in y: see Eq 5.9, p. 153)

For rotational motion we want to sum the moments to I (  (rotational inertia times angular acceleration). Dr. Meeks argues that I( is going to be negligible for a tiny segment, so we shall sum the moments to zero.


( moments = M(x+(x) - M(x) +Fy(x)(0) + Fy(x+(x)((x) = 0

We have taken moments about the lefthand end of the segment, and that's why Fy(x) is multiplied by 0.

Dividing by (x and passing to the limit of (x(0 gives


(3)
(M/(x + Fy = 0

rotational motion, neglecting I(,  see top equation, p. 152

Now we combine Eqs (1), (2), and (3).  Taking (/(x of Eq. (3) and substituting from Eq. (2) for (Fy/(y, we get

(4)
(2M/(x2 + ( A (2y/(t2  = 0 .

Substituting for M from (1) finishes the job

(5)
Y wh3/12 (4y/(x4  + ( A (2y/(t2 = 0 

The generic version of (5) is


(6)
Y (2 (4y/(x4   = - ( (2y/(t2 .

The wave equation for flexural waves on a rod or bar.

Dr  Meeks writes this as

(6')
c2 (2 (4y/(x4   = -  (2y/(t2  .

Eq. 5.11, p. 152 , with c2 = Y/(
He is using the abbreviation c2 = Y/(, where c is the longitudinal phase velocity in a bar.

Here is one possible solution to Eq. (6)

(7)
y(x,t) = A sin kx cos (t .

The derivative (4y/(x4   of (7) is k4 y(x,t), and the derivative (2y/(t2 of (7) is -(2 y(x,t). Putting these back in (6) gives

Y (2 (4y/(x4   = - ( (2y/(t2
Y (2 k4 y(x,t)   = +( (2 y(x,t) .

So (7) satisfies the flexural wave equation as long as   Y/( 2 k4    = (2.  Now we have to look at the 'boundary conditions' at the ends of the rod or bar to find out if those are satisfied.

Free end of a bar.   At the free end of a bar there are no forces and no torques or moments. The condition that M = 0 at a free end also means that (2y/(x2  = 0. This is due to Eq. (1) where M is proportional to (2y/(x2 . In (3) when we set Fy = 0 at a free end, we see that we must have (M/(x = 0. M depends on (2y/(x2, the condition that (M/(x = 0 means that (3y/(x3 = 0 as well.


Free end
M = 0  and Fy = 0

=>
(2y/(x2 = 0  and   (3y/(x3 = 0

Fixed end of a bar. At a fixed end, the displacement is zero, and the rod can be either 'clamped' or 'supported'. If the rod is clamped, its first derivative vanishes, (y/(x = 0. If the rod or bar is 'supported', it is hinged, so no moment can be applied and M = 0 => (2y/(t2 = 0.


Clamped end

y = 0
(y/(x = 0


Supported end

y = 0 
M = 0 => (2y/(t2 = 0

We'll first discuss solutions for a bar free at both ends. This will turn out to give the same frequencies of vibration as for a bar clamped at both ends. 

(next page)

We tried sin kx cos (t as a solution to (6) and it worked. There are four functions of x that will work, three in addition to sin kx, namely cos kx, sinh kx, and cosh kx. When you take four x-derivatives of any of these, you get the function back times k4.  Now we need to find combinations of trig and hyperbolic functins which satisfy the boundary conditions. 

Let's first have x=0 in the middle of the bar and try a solution which is even in x for a bar of length L:


y(x,t) = y(-x,t)


(8)
y(x,t) = ( a cos kx + b cosh kx ) cos(t

To satisfy the requirement of (2y/(x2 = 0 at the ends of the bar (x = (L/2) we will take two derivatives 


y''(L/2,t) = ( -k2 a cos kL/2 + k2 b sinh kL/2 ) cos (t

We can make (2y/(x2 = y''(L/2,t) = 0 if we let a = +C/cos(kL/2)  and b = +C/sinhh (kL/2). Then the even solution Eq. (8) would read

(9)
y(x,t) = C ( + cos kx/cos kL/2 + cosh kx/cosh(kL/2) ) cos((t).

But we also have to have y''' = 0 at a free end:  so we take 3 x-derivatives of (8), and set x = L/2


y'''(L/2,t) = C ( +k3 sin kL/2/ cos kL/2 + k3 b sinh kL/2/ cosh kL/2 ) .

This places a condition on k, namely that



-tan kL/2 = - tanh kL/2.

Condition for k, even solution on a free-free bar.

[image: image5.bmp]
The plot above is for -tan x vs tanh x. You can see intersections around 2.3, 5.9 etc. The tanh is almost equal to 1 in the first case, and is effectively indistinguishable from 1 in the rest. This means we are solving for tan x = -1 very nearly. The first case is coming very near 3(/4, the next at 7(/4, etc.

For even solutions of a free-free bar the equation is

(9)
y(x,t) = C ( + cos kx/cos kL/2 + cosh kx/cosh(kL/2) ) cos (t ,

and the values of k will be


k = close to 2.365, right on 7(/4, 11(/4, etc.
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This graph is for the lowest mode, with the vertical scale exaggerated.


What is the lowest frequency of an aluminum bar of length 0.75 m and 12.7 mm diameter?  

The k value we get from


kL/2 = 2.365

(the lowest solution of  -tan kL/2 =  tanh kL/2  )

The shape comes from Eq. (9)

(10)
y(x,t) = C [ + cos 2.365(x/L)/cos 2.365 + cosh 2.365(x/L)/cosh(2.365) ] cos((t),

The frequency comes from

(6)
Y (2 (4y/(x4   = - ( (2y/(t2 .

For aluminum Y = 7.1 x 1010 Pa and ( = 2700 kg/m3. This makes the wave speed c = 5128 m/s.

( = a/2 = 0.003175 m.  Taking 4 x-derivatives gives us k4, and taking 2 time derivatives gives -(2.

Now (6) becomes





c2 (2.25 x 10-4 m)2 (2*2.365/0.75 m)4 = (2 .

continued on next page

The frequency f  from this is


f = (/(2()  = c( k2 /(2() = 5128 * 0.003175 * 6.312 /(6.28)  = 103 Hz

The next highest frequency for even modes of a free-free bar is higher because k2 is higher, and it will be higher in the ratio of (k22/k12) = [ (7(/4)/(3(/4) ]2 = 49/9, or about 5 times higher, some 562 Hz. 

What about odd solutions on the bar?  We want solutions where y(x,t) = -y(-x,t).

Instead of       (8)
y(x,t) = ( a cos kx + b cosh kx ) cos(t
what would it be?

Then you would need to satisfy (2y/(t2 = 0 at x = ( L/2. This should give you a relation between a and b, like we got between Eqs. (8) and  (9). 

When you have an equation like (9), you still have to satisfy y''' = 0 at a free end. This will lead you to an equation for k like we had for even solutions, namely like   -tan (kL/2) = tanh(kL/2). This equation will be similar, but not quite identical. The solutions to this equation will be different from the even modes.  It may not surprise you to learn that the odd mode solutions will be extremely close to


kL/2  = 5(/4,  9(/4, etc.

Here is the shape of the lowest odd mode, with the vertical scale exaggerated.
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(next page)

Bar clamped at both ends. (Text p. 155).

For a bar clamped at both ends, we have and its first derivative equal to zero at each end. Using

y = a cos kx + b cosh kx  

we could have a = C/cos(kL/2) and b = -C/cosh(kL/2). The equation would then be

(11)
y(x,t) = C ( + cos kx/cos kL/2 - cosh kx/cosh(kL/2) ) cos (t ,

For the first derivative to vanish at the ends, we would need  - tan kL/2 = tanh (kL/2) as for the free-free bar. The function for the clamped-clamped bar would look as follows for the lowest even mode.

[image: image4.png]



The frequency of this mode is the same as the lowest even mode of a free-free bar.

At the bottom of p. 155, Dr. Meeks gives the formula
(L = 3.011 (/2,  5(/2, 7(/2, etc.

 for a bar clamped at both ends.  This is the same result as we got for the bar free at both ends


kL/2 = 3.011 (/2,   7(/2, 11 (/2    
(even modes)  and


kL/2 = 5(/2, 9(/2, ...


( odd modes)

Rotational instability in a clamped-clamped bar. If you have a long drive shaft effectively clamped at both ends, you have the possibility of a rotational instability. At the lowest frequency of this clamped-clamped system, the bar can begin to oscillate appreciably and possibly fail. 

(next page for a rotational instability problem, and argument for 1/R  ( (2y/(x2.)

Rotational Instability Problem:   A 1/4" diameter steel drive shaft is 24" long, effectively clamped at both ends. Find the frequency of rotational instability for this shaft a) in rad/sec and b) in rpm.

To show that 1/R ( (2y/(x2 (as done in MJM notes from 1998).

The idea is to obtain R from s = R(, and ds = Rd(.  For a curve y(x) in space consider an element ds of distance along the curve

(1)
ds = ((dx2 + dy2) = dx ((1+ y'2) 
or.

(1')
ds/dx = ((1+ y'2)


and

(2)
slope = dy/dx = tan ( = y'  .

Let ds be the arc of a circle of radius R, so that ds  = R d(, where d( is an infinitesimal angle subtended at the center of the circle.  d( is also the change in the tangent angle, since ds is perpendicular to R. Then because ds = R d(
(3)
(ds/dx)/(d(/dx) = ds/d( = R .

We already have ds/dx = ((1+ y'2) from (1) so it remains to work out d(/dx to find R from (3)

We start by noting that d(tan ()/d( = 1/cos2( and also that 1 + tan2 ( = 1+y'2 = 1/cos2( . Now we take the x-derivative of (2):


d/dx (tan()  = d/dx(y') = y'' .


d/dx(tan() = d(/dx d(tan()/d( = d(/dx [1/cos2(] = d(/dx (1+y'2). 

From (3)


R = ds/dx/[d(/dx] = ((1+y'2)/[y''/(1+y'2] = (1+y'2)3/2 /[y'' ] .

So when y'2 is quite small compared to 1 we have



y'' = 1/R .

