1
1












03/08/2006 3:28 PM

Dispersive waves on a slinky or music wire
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Abstract

Students can now study the dispersive waves which travel along a slinky by hanging a slinky between a wall and a sound board, then using software and hardware to record these exotic and pleasing sounds. Analysis is based on the insights of Frank Crawford, who recognized the basic simplicity of these waves. Results generally agree with theory, yet leave a few unanswered questions. If a loosely hung length of music wire (piano wire) is substituted for a slinky, one has a simpler system in several respects, still dispersive, and one in which agreement with theory is very nearly exact. Both systems confront the observer with a clear case of disturbances travelling in a dispersive medium at the group velocity, not the phase velocity.

Background. Many of us have been surprised and delighted by the sound made when a slinky is attached to a wall or sound board, then stretched and struck sharply. Crawford[1] noticed that the sounds (he called them 'whistlers', high frequencies arriving first, followed by lower and lower frequencies) did not depend on how much the slinky was stretched, even beyond its elastic limit. He reasoned that the sound did not depend significantly on the tension, and proposed that the sound travelled like a wave flexing laterally as it would in a long wire or bar, and his observations fit with the theory of these waves.

There are two main types of slinky[2], regular and junior. The regular slinky has loops of a mean diameter 7.0 cm, with a cross-sectional area roughly 2.7 mm x 0.7 mm. The diameter of junior slinky loops is 3.4 cm, with a cross-sectional area roughly 0.33 mm x 1.2 mm. Each has around 95 turns, so the unstretched length of the regular slinky is about 21 m and that of the junior slinky is around 10 m. The author has used both with similar success. (Slinky dimensions vary somewhat; there is no substitute for measuring them yourself.)

If a slinky were uncurled, it would look like a long thin bar with a rectangular cross-sectional area A = wh, where w/h is about 4:1. The dispersion relation from the elementary theory of flexural waves in bars and rods, is [3]


( = c(k2.









(1)

( is the angular frequency, k = 2(/wavelength, c is ((Young's modulus/density) the longitudinal bar speed, and ( is the radius of gyration of the cross-sectional area (for cylindrical bars  (= radius/2, and for rectangular bars flexing in a plane including the dimension s, ( = s/(12). Waves which flex in a plane including the thin dimension h have ( = h/(12, while waves flexing in the plane of the thicker dimension have ( = w/(12, and as we shall see, travel about twice as fast as those which flex in the plane of the thinner dimension. 

In music wire, the dispersion relation includes a low-frequency component[4]  (2/k2 = T/( + (k2.  This should reduce to Eq. (1) when the tension T is small, so we presume for music wire the correct relation is


(2/k2 = T/( + (c(k)2 .








(2)

In musical instruments, T/( dominates, but for music wire hanging slack, T/( will be only a small correction to Eq. (1), except at quite low frequencies. Crawford[5] thought there might be a dispersion relation somewhat similar to Eq. (2) for a slinky, namely


(2 = (o2 + (c(k2)2 ,








(3)

where (o is a low-frequency cutoff. 

The phase velocity (/k depends on frequency, so higher frequencies travel faster than lower ones. In dispersive media, it turns out that disturbances travel with the 'group velocity' d(/dk, rather than at the phase velocity[4]. On a rod or bar the group velocity is twice the phase velocity


vgroup = d(/dk  = 2 (/k = 2 (((c().






(4)

In Eq. (4), if ( is quadrupled, the group velocity will be doubled for a given frequency. A wave of frequency f travelling a distance D along the slinky will arrive at a time t given by


t = D/vgroup = (D/[2((2(fc() ].






(5)

We can plot 1/(f vs. t and expect a straight line of slope (2/D)((2(c() at high enough frequencies where we are not troubled by the low-frequency component of the dispersion relation. This line will not in general pass through the origin because the waves originated at the far end of the slinky before data taking began.

Crawford reported being able to excite either type flexural wave by flicking perpendicular to the plane of one slinky loop, or by striking a loop of the slinky lightly in its radial direction. The author found he was able to favor one over the other, but each was always activated to some extent. Fig. 1 shows graphs of sound vs. time from a run where the faster wave was preferentially excited.

Experiment. One end of a slinky is taped to a wall or rigid object and the other end is taped to a sound board. (A rectangular piece of cardboard 1-2 feet on a side like that in a cardboard box works fine.) A small microphone[6] is placed near the sound board or taped to it, and led through an audio amplifier[7] to a Vernier LabPro interface to be recorded via Vernier Logger Pro 3.3 software[8]. It helps to display the input signal on an oscilloscope. 

Logger Pro can be set up to trigger on a given input voltage, so after the slinky is struck (usually close to the wall), a certain input signal from the microphone will start the data acquisition (Logger also permits taking data points before the trigger, and the author usually took 200 of these). Slinky excitation varies from run to run, so there is no fixed time between the slinky being flicked and the start of data collection on each run. 

Fig. 1 shows parts of the sound record from a slinky, recorded at 49.144 kHz for 250 ms (this is the fastest sampling rate available; any longer sampling time results in a lower data rate). For this run, a junior slinky was stretched about 2 m between a sound board and a weighted ringstand. (At smaller distances, the spacing between loops makes it difficult to tap an individual loop.) A loop was struck laterally, radial to the plane of the loop, in order to mostly excite higher-speed waves. In Fig. 4 the line associated with these waves is visible, along with another half-dozen points, to be discussed shortly.

In Logger, the author saved each satisfactory run in *.cmbl format using Save As, then used Export As, to save the file as a text file, which was later opened and analyzed in Excel(, where plot of the full set of data was first laid out (Fig. 1a)). Then it was re-scaled to a smaller region, and the graph was extended for clearer viewing by dragging to cover some four dozen columns. 

To identify frequencies in the presence of irregular data, a blank strip of card was placed against the computer screen. A series of three or more equally-spaced peaks was sought, and strip was marked with vertical lines, each an estimate by eye of the centroid of a peak. Then the card was slid laterally to test whether the spacing seemed uniform between the peaks, and if so the starting time and ending time and number of waves between them was recorded.  A separate Excel sheet was used to enter the data in three columns, and calculate additional columns for the average arrival time, the estimated frequency and the reciprocal square root of frequency. Then 1/(f vs. time was plotted, resulting in graphs like those in Fig. 2.

Fig. 2 a) shows a linear pattern of 12 points close to the y-axis which turn out to be from the higher-speed waves. The next three points over are in a line of lower slope, due to lower-speed waves. The remaining three points all turn out to be higher-speed waves; two of these had made two round trips after first encountering the sound board, and the third had made one additional round trip. Fig. 2b) shows a fit to the high-frequency part of the main linear data. The two lowest-frequency points on are omitted in the interest of showing the high-frequency limit of the line. The omitted points lower the line slope because they are showing the first effects of the low-frequency term in the dispersion relation. 

Runs were also done on a 9-m length of 0.50 mm diameter steel music wire[9]. This was hung loosely, taped to a wall at one end and a soundboard at the other. Line fits were within 5% of the theoretical slope, using a nominal c = 5000 m/s for steel. Data seemed easier to interpret when the wire was struck in the middle, rather than near the end at the wall, far from the sound board. 

Discussion and conclusion. For the music wire, the experimental and theoretical slopes agreed within estimated experimental error. For the slinky, all the general outlines of Crawford's ideas are confirmed. For both slinky and music wire the disturbances are unquestionably seen to travel at the group velocity and not the phase velocity.

But the slope like that in Fig 2 b), for more than a dozen runs for both regular and junior slinkies, for both high-speed and low-speed waves, was higher by about 15-20% than the theoretical slope, and definitely outside estimated error. It is unlikely that Young's modulus for the steel in a slinky is some 40% higher than for ordinary steel. The helical slinky shape may in some way cause this discrepancy. 

An attempt was made in Eqs. (2) and (3) to ascertain the low-frequency term (T/( or (o) by including the two additional points of the line in Fig. 2 b), then trying to fit the resultant curve. It appeared that Eq. (3) might be the better fit, with (o around 70 rad/s. For Eq. (2), assuming it might apply to the slinky, a value of T/( around 6000 m2/s2 gave something of a fit. These values are unsupported by theory, and altogether provisional, awaiting more careful study.

T/( itself can be estimated by noting that a slinky or wire suspended at an angle ( below the horizontal at each end will have an upward force 2 T sin ( equal to its weight. Then an approximate value of T/( could be taken as gL/(2 sin (). For L ( 10 m (junior slinky or music wire) T/( is probably not much more than 150 m2/s2.  At this T/( value, for ½ mm diameter music wire, a plot of 1/(f vs. t has a slope at 5-Hz only ¼ % lower than at high frequencies, so unless the wire is hung with significant tension, 'low' frequencies are very low indeed. 

Figs. 1b) and 1c) both have a suggestion of 'beats' about them. This seems due to striking the slinky near the end, but not right at the end. After the slinky is excited, a direct wave heads for the sound board, closely followed by a wave which reflected off the fixed end. Since these waves travel different distances and arrive at the same time, the trailing wave will be of a higher frequency, giving rise to a pattern suggesting beats.

One of the author's students found frequencies and times using a fast fourier transform (FFT). This has limitations because taking more points in the FFT means greater precision in the frequency, but less precision in the time at which the frequency occurred (a frequency-time 'uncertainty principle'). There are about 50 points per ms, so a 256 point FFT covers about 5 ms. The student slid the starting point of her 256-point FFT along in small time increments, and noted when a particular frequency component was maximum. Her results were suggestive but not especially precise.

For further study, an automated analysis method might be developed to mimic or exceed the author's  old-fashioned approach, slinky tension might be varied by changing the length between supports to discover any effect of tension on the slope of 1/(f vs. time, or one might gather enough low-frequency slinky data to pin down an improved empirical dispersion relation along the lines of Eq. (3).
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Figure 1 a)
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Figure 1 b)
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Figure 1 c)
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Figure 1 d)
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Figure 1 e)

Figure 1. Plots of voltage vs. time (ms)
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Figure 2 a)
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Figure 2 b)

Figure 2. Plots of 1/(f (in Hz) vs. t in ms

