Physics I

Homework VII                                                                                                                 CJ

Chapter 26; 4, 14, 24, 34, 45, 48, 50
26.4. Model: The electric field is that of the two charges located on the y-axis.

Visualize: Please refer to Figure Ex26.4. We denote the positive charge by q1 and the negative charge by q2. The electric field 
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 of the positive charge q1 is directed away from q1, but the field 
[image: image2.wmf]2

E

r

 is toward the negative charge q2. We will add 
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 and 
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 vectorially to find the strength and the direction of the net electric field vector.

Solve: The electric fields from q1 and q2 are


[image: image5.wmf](

)

(

)

(

)

9229

1

11

22

0

1

9.010 N m/C110 C

1

ˆˆ

, away from  along  axis 3600 N/C 

4

0.05 m

q

Eqxii

r

pe

-

´´

æö

=+==

ç÷

ç÷

èø

r



[image: image6.wmf]2

2

2

0

2

1

, below -axis

4

q

Ex

r

q

pe

æö

=-

ç÷

ç÷

èø

r


From the geometry of the figure, 


[image: image7.wmf]10 cm

tan63.43

5 cm

qq

=Þ=°



[image: image8.wmf](

)

(

)

(

)

(

)

(

)

(

)

9229

2

22

9.010 N m/C110 C

ˆˆˆˆ

cos63.43sin63.43322 644 N/C

0.10 m0.05 m

Eijij

-

´´

Þ=-°-°=-+

+

r



[image: image9.wmf](

)

net12

ˆˆ

3278644 N/C

EEEij

Þ=+=-

rrr



 EMBED Equation.DSMT36  [image: image10.wmf](
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To find the angle this net vector makes with the horizontal, we calculate
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Thus, the strength of the net electric field at P is 3341 N/C and 
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E

r

 makes an angle of 
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 below the x-axis.

26.14. Model: Each disk is a uniformly charged disk. When the disk is charged negatively, the on-axis electric field of the disk points toward the disk. The electric field points away from the disk for a positively charged disk.
	   Visualize: 
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Solve: (a) The surface charge density on the disk is
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From Equation 26.22, the electric field of the left disk at z  0.10 m is
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In other words, 
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. Similarly, the electric field of the right disk at z  0.10 m (to its left) is 
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. The net field at the midpoint between the two rings is 
[image: image19.wmf]12

EEE

=+

rrr

  
[image: image20.wmf](

76,000

 
[image: image21.wmf]N/C,

 
[image: image22.wmf])

left

.
(b) The force on the charge is
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Assess: Note that the force on the negative charge is to the right because the electric field is to the left.

26.24. Model: The disks form a parallel-plate capacitor. The electric field inside a parallel-  
   

plate capacitor is a uniform field, so the proton will have a constant acceleration.
	Visualize: 
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Solve: (a) The two disks form a parallel-plate capacitor with surface charge density
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From Equation 26.29, the field strength inside a capacitor is
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(b) The electric field points toward the negative plate, so in the coordinate system of the figure 
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 on the proton, causing an acceleration with a y-component that is
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After the proton is launched, this acceleration will cause it to lose speed. To just barely reach the positive plate, it should reach v1  0 m/s at y1  1 mm. The kinematic equation of motion is
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Assess: The acceleration of the proton in the electric field is enormous in comparison to the gravitation acceleration g. That is why we did not explicitly consider g in our calculations.

26.34. Model: The electric field is that of three point charges q1  (Q, q2  (Q and q3  4Q.

Visualize: Assume the charges are in the x-y plane. The net electric field at point P is 
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. The procedure will be to find the magnitudes of the electric fields, to write them in component form, and to add the components.
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Solve: (a) The electric field produced by q1 points toward q1 and is given by


[image: image35.wmf]1

2

0

1

ˆ

4

Q

Ei

L

pe

æö

=-

ç÷

èø

r


The electric field produced by q2 points toward q2 and is given by
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The electric field produced by q3 is
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 points away from q3 and makes an angle 
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Adding these three vectors gives
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(b) The force on the charge is
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26.45. Model: The electric field is that of a line charge of length L.

Visualize: Please refer to Figure P26.45. Let the bottom end of the rod be the origin of the coordinate system. Divide the rod into many small segments of charge (q and length (y(. Segment i creates a small electric field at the point P that makes an angle ( with the horizontal. The field has both x and y components, but Ez  0 N/C. The distance to segment i from point P is 
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Solve: The electric field created by segment i at point P is
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The net field is the sum of all the 
[image: image47.wmf]i
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, which gives 
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. (q is not a coordinate, so before converting the sum to an integral we must relate charge (q to length (y(. This is done through the linear charge density (  Q/L, from which we have the relationship


[image: image49.wmf]Q

qyy

L

l

¢¢

D=D=D


With this charge, the sum becomes
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Now we let (y( ( dy( and replace the sum by an integral from 
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26.48. Model: Assume that the semicircular rod is thin and that the charge lies along the 
   

      semicircle of radius R.
	Visualize: 
	[image: image54.png]Segment i







The origin of the coordinate system is at the center of the circle. Divide the rod into many small segments of charge (q and arc length (s. Segment i creates a small electric field 
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 at the origin. The line from the origin to segment i makes an angle ( with the x-axis. 

Solve: Because every segment i at an angle ( above the axis is matched by segment j at angle ( below the axis, the y-components of the electric fields will cancel when the field is summed over all segments. This leads to a net field pointing to the right with
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Note that angle (i depends on the location of segment i. Now all segments are at the same distance ri  R from the origin, so
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The linear charge density on the rod is (  Q/L, where L is the rod’s length. This allows us to relate charge (q to the arc length (s through

(q  ( (s  (Q/L)(s
Thus, the net field at the origin is
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The sum is over all the segments on the rim of a semicircle, so it will be easier to use polar coordinates and integrate over ( rather than do a two-dimensional integral in x and y. We note that the arc length (s is related to the small angle (( by (s  R((, so
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With (( ( d(, the sum becomes an integral over all angles forming the rod. ( varies from (( ((/2 to (  (/2. So we finally arrive at
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Since we’re given the rod’s length L and not its radius R, it will be convenient to let R  L/(. So our final expression for 
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, now including the vector information, is
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(b) Substituting into the above expression, 
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26.50. Model: Assume that the plastic sheets are planes of charge.

Visualize: Please refer to Figure P26.50. 

Solve: At point 1 the electric field due to the left sheet and the right sheet are
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