Physics I

Homework I                                                                                                                   CJ

Chapter 13; 5, 11, 19, 66, 67, 72

13-5. Model: Spinning skater, whose arms are outstretched, is a rigid rotating body.


	Visualize: 
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Solve: The speed v  r, where r  140 cm/2  0.70 m. Also, 180 rpm  (180)2/60 rad/s  6 rad/s. Thus, v  (0.70 m)(6 rad/s)  13.2 m/s.


Assess: A speed of 13.2 m/s ( 26 mph for the hands is a little high, but reasonable.

	13.11. Visualize: 
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Solve: Torque by a force is defined as   Frsin where  is measured counterclockwise from the 
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 vector to the 
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 vector. The net torque on the pulley about the axle is the torque due to the 30 N force plus the torque due to the 20 N force:
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Assess: A negative torque causes a clockwise motion of the pulley.
13-19. Model: The three masses connected by massless rigid rods is a rigid body.

Visualize: Please refer to Figure Ex13.19.

Solve: (a)  
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(b) The moment of inertia about an axis through A and perpendicular to the page is
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(c) The moment of inertia about an axis that passes through B and C is


[image: image9.wmf](

)

2

222

BCA

(0.10 m)(0.06 m)0.00128 kg m

Im

=-=


Assess: Note that mass mA does not contribute to IA, and the masses mB and mC do not contribute to IBC.
13.66. Model: The hollow cylinder is a rigid rotating body.


	Visualize: 
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We placed the origin of the coordinate system on the ground.


Solve: (a) Newton’s second law for the block is (wB  T  mBay, where T is the tension in the string, wB  mBg is the weight of the block, and ay is the acceleration of block. The string tension exerts a negative (cw) torque on the cylinder, so the rotational form of Newton’s second law for the hollow cylinder is
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where we used the acceleration constraint 
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 With this expression for T, Newton’s second law for the block becomes
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The moment of inertia of a hollow cylinder is 
[image: image14.wmf]2

C

,

ImR

=

 so the equation for ay simplifies to
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The speed of the block just before it hits the ground can now be found using kinematics:
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(b) The conservation of energy equation K1  Ug1  K0  Ug0 for the system (block  cylinder  earth) is
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Assess: Newton’s second law and the conservation of energy method give the same result for the block’s final velocity.
13-67. Model: The pulley is a rigid rotating body. We also assume that the pulley has the mass distribution of a disk and that the string does not slip.
 

	Visualize: 
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Because the pulley is not massless and frictionless, tension in the rope on both sides of the pulley is not the same. 


Solve: Applying Newton’s second law to m1, m2, and the pulley yields the three equations: 
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Noting that –a2  a1  a, 
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 and   a/R, the above equations simplify to 
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Adding these three equations, 
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We can now use kinematics to find the time taken by the 4.0 kg block to reach the floor: 
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13-72. Model: The disk is a rigid body rotating on an axle passing through one edge. The gravitational potential energy is transformed into rotational kinetic energy as the disk is released.

	Visualize: 
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We placed the origin of the coordinate system at a distance R just below the axle. In the initial position, the center of mass of the disk is at the same level as the axle. The center of mass of the disk in the final position is coincident with the origin of the coordinate system.


Solve: 

(a) The torque is due to the disk’s weight acting at the center of mass. Thus 
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The moment of inertia about the disk’s edge is obtained using the parallel-axis theorem:
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(b) The energy conservation equation Kf  Ugf  Ki  Ugi is
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Assess: An angular velocity of 6.60 rad/s (or 1.05 revolutions/s) as the center of mass of the disk reaches below the axle is reasonable.
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