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RSA Setup

Ronald Rivest, Adi Shamir, Leonard Adleman, 1977.

Pick two primes p and q.
Compute n = pq.
Pick encryption exponent e such that e and (p − 1)(q − 1) don’t
have any common prime factors.
Make n and e public. Keep p and q private.
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RSA Setup: Example

p = 53
q = 71
n = pq = 3763
(p − 1)(q − 1) = 3640 = 23 · 5 · 7 · 13
e = 27 = 33

e and (p − 1)(q − 1) don’t have any common prime factors
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RSA Setup: PGP public key block

From holden@math.duke.edu Thu Feb 8 14:07:19 2001
Date: Thu, 8 Feb 2001 14:07:18 -0500
X-Authentication-Warning: hamburg.math.duke.edu: holden set sender to holden@hamburg.math.duke.edu using -f
From: Joshua Holden To: holden@math.duke.edu
Subject: message with PGP block

Here is my PGP block: now you can send me messages!

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2
Comment: Processed by Mailcrypt 3.5.5, an Emacs/PGP interface

mQCNAznRHaMAAAEEAPix/FD/jF/ixMvd9aIjhZ/K6o2kv/TaGAVkeIG5VZ48jzIa
NTqX1EKDw6aABUiQApqavOaQuiLbi/Ez9HXX9LfcTdcp8u94BKGgmEy6Jv1za08I
2YVL1kUJso6lauryr3Sc8wiQTwx3imohM4ai/1dVuq4Qp2WCBSRdyaafdchdAAUR
tC9Kb3NodWEgSG9sZGVuICgxMDI0IGJpdCkgPGhvbGRlbkBtYXRoLmR1a2UuZWR1
Pg==
=VgE9
-----END PGP PUBLIC KEY BLOCK-----
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Modular Arithmetic

Karl Friedrich Gauss, 1801.

Modular Arithmetic = “Wrap-around” computations

Example: Start at 12 o’clock. 5 hours plus 8 hours equals 1 o’clock.

5 + 8 ≡ 1 (mod 12)

Example: Start at 12 o’clock. 11 hours times 5 equals 7 o’clock.

11 · 5 ≡ 7 (mod 12)
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RSA Encryption

Anyone can encrypt, because n and e are public.
To encrypt, convert your message into a set of plaintext numbers
P, each less than n.
For each P, compute C ≡ Pe (mod n).
The numbers C are your ciphertext.
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RSA Encryption: Example

Send the message “cats and dogs”:

ca ts an dd og sx
0200 1918 0013 0303 1406 1823
200e ≡ 12 (mod n)

1918e ≡ 1918 (mod n)

13e ≡ 1550 (mod n)

303e ≡ 3483 (mod n)

1406e ≡ 2042 (mod n)

1823e ≡ 2735 (mod n)
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RSA Encryption: PGP message

From holden@math.duke.edu Thu Feb 8 14:09:25 2001
Date: Thu, 8 Feb 2001 14:09:24 -0500
X-Authentication-Warning: hamburg.math.duke.edu: holden set sender to holden@hamburg.math.duke.edu using -f
From: Joshua Holden To: holden@math.duke.edu
Subject: This message is encrypted

-----BEGIN PGP MESSAGE-----
Version: 2.6.2
Comment: Processed by Mailcrypt 3.5.5, an Emacs/PGP interface

hIwDJF3Jpp91yF0BBAC6gnKTMhGWg9hUELd7WfJgUn7OqObCNmvm9V8ff+tyq0re
nSQqCYw784CAkm5gaUtJ0AW4go2pDyI2hm5ocoVfMeBOJpKeckSchncV9zHSH2zx
jBM8W0NYPAaa7AHFisz19rqxkkt1aQ4W49i7LUxq6rXheoSPMMcHbHyBa/mQEaYA
AABEmtEXwkUSMOh+x4dSM/6ZUswVZznmei9TOw+md8OM+LiOSakw91GT431tJPAN
c44q+q2Yq8ehykaz0sV4fXscPy2H9A0=
=v1z0
-----END PGP MESSAGE-----
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Trap Door

Leonhard Euler, 1736.

Let φ(n) be the number of positive integers less than or equal to n
which don’t have any common factors with n.

Example: If n = 15, then the positive integers less than or equal to n
which don’t have any common factors with n are 1, 2, 4, 7, 8, 11, 13,
14. So φ(15) = 8.
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Trap Door: RSA

In the RSA system n = pq, so φ(n) is the number of positive integers
less than or equal to n which don’t have p or q as a factor.

How many positive integers less than or equal to n do have p as a
factor? p, 2p, 3p, . . . , n = qp so there are q of them.
Similarly, there are p positive integers less than or equal to n with
q as a factor.
Only one positive integer less than or equal to n has both p and q
as factors, namely n = pq. So we should only count this once.
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Trap Door: Formula

Therefore,

φ(n) = n − p − q + 1 = pq − p − q + 1 = (p − 1)(q − 1).

This is private! You can’t calculate it without knowing p and q.
Why is this useful?
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Euler’s Theorem

Euler’s Theorem: If x is an integer which has no common prime factors
with n, then

xφ(n) ≡ 1 (mod n).

Why is Euler’s Theorem true?
Two versions of the answer: Number Theory and Group Theory

Number Theory idea: We consider the positive integers less than or
equal to n which don’t have any common factors with n, and multiply
each of them by x modulo n. Compare them to the same integers
without multiplying by x .
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Euler’s Theorem: Example (I)

For n = 15, consider

x ,2x ,4x ,7x ,8x ,11x ,13x ,14x (mod 15),

and compare them to 1,2,4,7,8,11,13,14.
If we multiply all of the first set we get

x8 · 1 · 2 · 4 · 7 · 8 · 11 · 13 · 14 (mod 15)

and if we multiply all of the second set we get

1 · 2 · 4 · 7 · 8 · 11 · 13 · 14 (mod 15).

What if we do all of this for x = 11?
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Euler’s Theorem: Example (II)

The first set will be:

1 · 11 ≡ 11 (mod 15)

2 · 11 ≡ 7 (mod 15)

4 · 11 ≡ 14 (mod 15)

7 · 11 ≡ 2 (mod 15)

8 · 11 ≡ 13 (mod 15)

11 · 11 ≡ 1 (mod 15)

13 · 11 ≡ 8 (mod 15)

14 · 11 ≡ 4 (mod 15)
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Euler’s Theorem: Example (III)

The first set is the same as the second set, only in a different
order!
In fact, this always happens.
So

x8 · 1 · 2 · 4 · 7 · 8 · 11 · 13 · 14 ≡ 1 · 2 · 4 · 7 · 8 · 11 · 13 · 14 (mod 15)

or
x8 ≡ 1 (mod 15).
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Cayley diagram

Arthur Cayley, 1878.�������	�

��

��

��

���

���
��

��
��

��
��

�������	�����
��

���

����
��

��
��

��
�

�������	�

��

��

�������	��
��

��

�������	��
�� �� �������	��

��

		

�������	�
��

��
��

���

������������� �������	�

��

		

��
���

�������������

Group Theory idea: We make
a Cayley diagram for the num-
bers less than n.
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Cayley diagram: Example (II)

Say x = 11. Follow the arrows from 1 to 11. This is one x14 arrow
and two x2 arrows. If you do this 7 more times, you will be
following a total of eight x14 arrows and sixteen x2 arrows, and
you should end up at 11 to the eighth. However, eight x14 arrows
and sixteen x2 arrows clearly ends you up back where you started!
(Note that it doesn’t matter in what order you follow the arrows....)

So how do we use Euler’s Theorem as a trap door?
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RSA: One More Piece

We need one more piece of (private) information, and an ancient
Greek mathematician will tell us how to get it.

Euclid, about 300 B.C.E.

Theorem: If a and b don’t have any common prime factors, then there
are integers c and d such that

ac + bd = 1.
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Euclidean Algorithm

Since we picked e such that e and (p − 1)(q − 1) don’t have any
common prime factors, then there are integers c and d such that

(p − 1)(q − 1)c + ed = 1

or
φ(n)c + ed = 1.

Euclid also tells us how to find c and d, using the Euclidean
Algorithm.
Once we have found the decryption exponent d , which is private,
we can decrypt.
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RSA Decryption

For each C, compute Cd (mod n).
What will this give you?
We know C ≡ Pe (mod n), although we don’t yet know what P is.
So

Cd ≡ (Pe)d ≡ Ped ≡ P1−φ(n)c ≡ P(Pφ(n))−c (mod n).

But Pφ(n) ≡ 1 (mod n) by Euler’s Theorem!
So Cd ≡ P (mod n) and we get our original plaintext back.
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RSA Decryption: Example (I)

p = 53
q = 71
(p − 1)(q − 1) = 3640
e = 27
The Euclidean Algorithm tells us

16(p − 1)(q − 1)− 2157e = 1.

d = −2157
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RSA Decryption: Example (II)

12d ≡ 200 (mod n)

1918d ≡ 1918 (mod n)

1550d ≡ 13 (mod n)

3483d ≡ 303 (mod n)

2042d ≡ 1406 (mod n)

2735d ≡ 1823 (mod n)

0200 1918 0013 0303 1406 1823
ca ts an dd og sx

“cats and dogs”
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Breaking RSA: Factoring

So why do we think RSA is secure?
As far as we know, the only way to break RSA is to find p and q by
factoring n. The fastest known factoring algorithm takes
something about like

e(log n)1/3(log(log n))2/3

time units to factor n. (The size of the time unit depends on things
like how fast the computer is!)
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Breaking RSA: Fast computers

For the fastest single computer in 2006, it would probably take about 1
billion years to factor a number with 300 decimal digits. However, with
networked computers, a large company might be able to improve this
by a factor of as much as 1 million.

(More technically, it is estimated that factoring a number with 300
decimal digits would take about 1011 MIPS-years. 1 MIPS-year is a
million-instructions-per-second processor running for one year. A
1-GHz Pentium is about a 250-MIPS machine.)
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Breaking RSA: Factoring vs. Setup

On the other hand, finding p and q and multiplying them together is
very fast. Finding a number p which is (probably) prime takes about
100(log p)4 time units. This looks large, but it isn’t really; for a 300-digit
number this should only take a few minutes. (Multiplying p and q
together is even faster.)
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Breaking RSA: A Graph

100*ln(n)^4

exp(ln(n)^(1/3)*ln(ln(n))^(2/3))

At some size of n it will always
be easier to make the cipher
than to break it!

Joshua Holden (RHIT) Modular arithmetic and trap door ciphers 26 / 47



RSA Digital Signatures

As a bonus, RSA gives us a way to digitally “sign” messages, thereby
proving who wrote them. This uses the same public n and e and
private d as before.

For each plaintext P, compute S ≡ Pd (mod n).
The numbers S are your signed message.
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RSA Digital Signatures: Example

Sign the message “cats and dogs”:

ca ts an dd og sx
0200 1918 0013 0303 1406 1823
200d ≡ 648 (mod n)

1918d ≡ 1918 (mod n)

13d ≡ 914 (mod n)

303d ≡ 1946 (mod n)

1406d ≡ 664 (mod n)

1823d ≡ 2735 (mod n)
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RSA Digital Signatures: PGP message

From holden@math.duke.edu Thu Feb 8 14:10:42 2001
Date: Thu, 8 Feb 2001 14:10:41 -0500
X-Authentication-Warning: hamburg.math.duke.edu: holden set sender to holden@hamburg.math.duke.edu using -f
From: Joshua Holden To: holden@math.duke.edu
Subject: This message is signed but not encrypted

-----BEGIN PGP SIGNED MESSAGE-----

I’m signing this message so that you know it’s me!

-----BEGIN PGP SIGNATURE-----
Version: 2.6.2
Comment: Processed by Mailcrypt 3.5.5, an Emacs/PGP interface

iQCVAwUBOoLvKyRdyaafdchdAQELuQP+PBR2lY8rEPrgA4GzWQS/MbE4UDECkgBk
v+6Q/gAwrHzMwemXcZxKU1FGFClvfHxxyjoy8hJgYeLYiGvD+q11gtNGZtTdLzqh
xL/Bdw75fseFxal/32ZS45jMA3gA2220m70hkJg4EzyvlhDUdUI1SIQHn/V26H0g
I25VOm/Ib8s=
=CRW2
-----END PGP SIGNATURE-----
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Verifying the Signature

Since only you know the decryption exponent d , only you can sign a
message. Anyone you send it to can prove it was you by computing Se

(mod n) (since n and e are public) and getting back Pde (mod n),
which we know is congruent to P.

If this matches the P which you sent separately, then the message
was correctly signed, so it must have come from someone who
knows d .
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Verifying the Signature: Example

648e ≡ 200 (mod n)

1918e ≡ 1918 (mod n)

914e ≡ 13 (mod n)

1946e ≡ 303 (mod n)

664e ≡ 1406 (mod n)

2735e ≡ 1823 (mod n)

0200 1918 0013 0303 1406 1823
ca ts an dd og sx

“cats and dogs”
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Encrypting and Signing

One can even sign an encrypted message this way. Suppose Alice
wants to send Bob an encrypted message.

She first encrypts with Bob’s public nB and eB.
Secondly, she signs the message with her nA and private dA.
Since her dA is different from Bob’s dB, they don’t cancel out.
Then Bob can “unsign” the message with Alice’s public nA and eA.
Finally, Bob decrypts the message with his nB and private dB!
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Encrypting and Signing: Example (I)

Alice:

Private: pA = 53,qA = 71
Public: nA = pAqA = 3763
Public: eA = 27
Private: dA = −2157 (same as before)

Bob:

Private: pB = 41,qB = 67
Public: nB = pBqB = 2747
Private: (pB − 1)(qB − 1) = 2640 = 24 · 3 · 5 · 11
Public: eB = 49 = 72

Private: The Euclidean Algorithm tells Bob

8(pB − 1)(qB − 1)− 431eB = 1.

Private: dB −−431
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Encrypting and Signing: Example (II)

Alice encrypts the message with Bob’s public information:

ca ts an dd og sx
0200 1918 0013 0303 1406 1823
200eB ≡ 2411 (mod nB)

1918eB ≡ 1836 (mod nB)

13eB ≡ 1401 (mod nB)

303eB ≡ 2314 (mod nB)

1406eB ≡ 2143 (mod nB)

1823eB ≡ 1154 (mod nB)
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Encrypting and Signing: Example (III)

Alice signs the message with her private information and send the
result to Bob:

2411dA ≡ 2041 (mod nA)

1836dA ≡ 814 (mod nA)

1401dA ≡ 1249 (mod nA)

2314dA ≡ 1396 (mod nA)

2143dA ≡ 772 (mod nA)

1154dA ≡ 3139 (mod nA)
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Encrypting and Signing: Example (IV)

Bob “unsigns” the message using Alice’s public information:
2041eA ≡ 2411 (mod nA)

814eA ≡ 1836 (mod nA)

1249eA ≡ 1401 (mod nA)

1396eA ≡ 2314 (mod nA)

772eA ≡ 2143 (mod nA)

3139eA ≡ 1154 (mod nA)
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Encrypting and Signing: Example (V)

and then decrypts it using his private information:
2411dB ≡ 200 (mod nB)

1836dB ≡ 1918 (mod nB)

1401dB ≡ 13 (mod nB)

2314dB ≡ 303 (mod nB)

2143dB ≡ 1406 (mod nB)

1154dB ≡ 1823 (mod nB)

0200 1918 0013 0303 1406 1823
ca ts an dd og sx

“cats and dogs”
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Attacks on RSA

Finding out someone’s private d is about as hard as factoring n. But
sometimes we can find out a particular message without breaking the
general code. Usually this is because e is too small — small e makes
the encrypting faster, but can weaken security.
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Small Message Attack (I)

p = 53, q = 71
n = pq = 3763
e = 3

“abaracadabara”

ab ar ac ad ab ar ax
0001 0017 0002 0003 0002 0017 0023
1e ≡ 1 (mod n)

17e ≡ 1150 (mod n)

2e ≡ 8 (mod n)

3e ≡ 27 (mod n)

2e ≡ 8 (mod n)

17e ≡ 1150 (mod n)

23e ≡ 878 (mod n)
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Small Message Attack (II)

But:
3
√

1 = 1
3
√

1150 = 10.4769
3
√

8 = 2
3
√

27 = 3
3
√

8 = 2
3
√

1150 = 10.4769
3
√

878 = 9.5756
0001 ???? 0002 0003 0002 ???? ????
ab ?? ac ad ab ?? ??

An eavesdropper can recover most of the message!

Joshua Holden (RHIT) Modular arithmetic and trap door ciphers 40 / 47



Common Exponent Attack (I)

Using a small exponent like e = 3 is fast, but it can be insecure.
Suppose we’re sending the same message to Alice, Bob, and Carol,
and they all have the same small exponent.

pA = 53, qA = 71
nA = pAqA = 3763
eA = 3

(We’ve used this key before.)

pB = 41, qB = 83
nB = pBqB = 3403
(pB − 1)(qB − 1) =
3280 = 24 · 5 · 41
eB = 3

pC = 47, qC = 87
nC = pCqC = 4089
(pC − 1)(qC − 1) =
3956 = 22 · 23 · 43
eC = 3
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Common Exponent Attack (II)

“cats”:

ca ts
0200 1918

Message to Alice:
200eA ≡ 3625 (mod nA)

1918eA ≡ 2060 (mod nA)

Message to Bob:
200eB ≡ 2950 (mod nB)

1918eB ≡ 2223 (mod nB)

Message to Carol:
200eC ≡ 1916 (mod nC)

1918eC ≡ 2326 (mod nC)
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Common Exponent Attack (III)

Eve (an eavesdropper) hears the messages. So Eve knows that

3625 ≡ P3 (mod nA)

2950 ≡ P3 (mod nB)

1916 ≡ P3 (mod nC)

and similarly for the second half of the message. (Everything here
except P is public information!)
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Chinese Remainder Theorem

But:

Chinese Remainder Theorem: If m1 and m2 don’t have any common
prime factors, then

x ≡ a (mod m1), x ≡ a2 (mod m2)

can be solved for a unique x modulo m1m2.

This problem was studied in Greece, China, and India from the first
century C.E. on. But the general solution (the ta-yen, or “great
extension” rule) was first given by Qin Jiushao in 1247.
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The Ta-Yen Magic Formula

In Eve’s case, the ta-yen magic formula is:

qA ≡ (nBnC)−1 (mod nA),

qB ≡ (nAnC)−1 (mod nB),

qC ≡ (nAnB)−1 (mod nC),

P3 ≡ 3625nBnCqA + 2950nAnCqB + 1916nAnBqC (mod nAnBnC)

≡ 8000000 (mod 52361644521)
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The Common Exponent Attack Concluded

But now Eve can use the small message attack:
3
√

80000000 = 200
0200
ca (ts)

This is guaranteed to work if there are at least e messages.

First Moral: Small exponents can be dangerous!

Second Moral: Don’t send identical messages to different people!
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HNAT SOFK LSIR EINT GZXN!
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