
A GOOD HASH FUNCTION IS HARD TO FIND, AND VICE VERSA

JOSHUA HOLDEN

Abstract. Secure hash functions are the unsung heroes of modern cryptography. Intro-
ductory courses in cryptography often leave them out — since they don’t have a secret key, it
is difficult to use hash functions by themselves for cryptography. In addition, most theoreti-
cal discussions of cryptographic systems can get by without mentioning them. However, for
secure practical implementations of public-key ciphers, digital signatures, and many other
systems they are indispensable. In this paper I will discuss the requirements for a secure
hash function and relate my attempts to come up with a “toy” system which both reasonably
secure and also suitable for students to work with by hand in a classroom setting.

1

1. Hash Functions

Hash functions are an essential part of modern cryptographic practice. At their root,
however, hash functions don’t necessarily have anything to do with cryptography, or even
secrecy. By definition, a hash function is any function which takes an arbitrarily long string
of characters or bits as input and returns a fixed-length output. A simple example using
characters from the Roman alphabet is given in [2, Example 3.6.1, p. 233]: write the string
in rows of five letters each (padding if necessary) and convert each letter to its numerical
equivalent. Then add down the columns modulo 26 and convert the result back to letters.
For example, if the input string is “Hello, my name is Alice”, the procedure would go:

H E L L O → 07 04 11 11 14
M Y N A M → 12 24 13 00 12
E I S A L → 04 08 18 00 11
I C E X X → 08 02 04 23 23

05 12 20 08 08
↓ ↓ ↓ ↓ ↓
F M U I I

The output of the hash function, or hash value, is always five letters long, no matter how
long the input is. In this case, “FMUII” would be the output.

When students first see hash functions, there are two common misconceptions that they
often start with. First, hash functions are not encodings of the original string, in the sense
that it is not possible to recover the string from the hash function, no matter how long you
work at it or how clever you are. Since hash value has a fixed length while the input can
be arbitrarily long, there simply isn’t enough information to recover the original input. The
second point that needs to be made is that hash functions are not in any way secret. There
is no key to a hash function and anybody can compute the hash value given the input string.

Hash functions are used for purposes other than cryptography. In database design, for
example, hash functions are used to convert a search key into a convenient index into a
table where the record with that key is stored. A checksum is a hash function used to detect
accidental errors introduced into a message or stored record. The hash function shown above
makes a good checksum, since any single error will change the result, and two errors that
canceled each other out would have to occur a multiple of five characters apart in the original
message. It is rather unlikely that such a error would occur by accident!

There are two properties that are convenient for hash functions in most applications. First,
hash functions should be fast to compute. Secondly, it is often useful for hash values to be
distributed uniformly, it the sense that every possible hash value is used about the same
number of times, even when the original set of inputs contains groups of similar strings. For
example, if we are using a hash function as a checksum, we wouldn’t want there to be many
strings which all hashed to “AAAAA” and only a few that hashed to “ZZZZZ” — that would
increase the chance that two similar strings would both hash to “AAAAA” and lessen the
likelihood that we could detect errors between them.

For cryptographic purposes, however, these properties are not sufficient. For example, one
common use of a hash function in cryptography is as part of a public-key digital signature.
Suppose, as is usual in cryptography, Alice wants to send a message to Bob, in such a way

2

that Bob knows that only Alice could have sent the message. Using a digital signature
algorithm, Alice could cryptographically “sign” the message using a private key that only
she knows. Bob could then use Alice’s public key to verify that the message was properly
signed. If Frank (a forger) wants to send Bob a message claiming to be from Alice, he would
not be able to produce a properly signed message without the knowledge of Alice’s private
key.

However, secure digital signature algorithms are slow, and a larger input makes them
slower. So instead of signing the entire message, Alice would like to sign a “message digest”
which somehow captures the essence of the message but is much shorter. The output of a
hash function is a good candidate for such a message digest, but only if the hash function is
cryptographically secure.

Another use for a hash function is to get a message into the public record without revealing
what it is. The use of anagrams for this purpose was common among scientists in the early
modern period, when they wanted to make sure they got the priority for some discovery while
still giving themselves time to refine it before publishing [7]. For example, after discovering
what he thought were two large moons of Saturn, Galileo sent a letter to Kepler in 1610
with the sequence of letters:

smaismrmilmepoetalevmibunenugttaviras

Only after he was ready to publish his findings did Galileo reveal that these letters were an
anagram for the Latin phrase altissimum planetam tergeminum observari (I have seen the
uppermost planet triple) [7].

An anagram is not a true hash, since it does not have a fixed length output. A “lazy”
anagram, however, simply alphabetizes the letters, which is equivalent to listing the number
of times each letter in the message appears. Christiaan Huygens, for example, upon realizing
that Galileo’s “moons” were actually rings, in 1656 published the “anagram”:

aaaaaaacccccdeeeeeghiiiiiiillllmmnnnnnnnnnooooppqrrstttttuuuuu

which contains exactly the letters in annulo cingitur, tenui, plano, nusquam cohaerente,
ad eclipticam inclinato (it is surrounded by a slender flat ring, everywhere distant from
the surface, and inclined to the ecliptic) [16, 17]. If, instead, Huygens had abbreviated his
“anagram” something like the following:

a7 b0 c5 d1 e5 f0 g1 h1 i7 k0 l4 m2 n9 o4 p2 q1 r2 s1 t5 u5 x0 y0 z0

(leaving out, of course, the letters which do not appear in Latin) then he would have had a
fixed length (if not particularly short) output and a true hash function. A hash function used
for this purpose should again be cryptographically secure in order to prevent the discoverer
from changing the meaning of his claim, or worse, publishing the hash value without any
particular meaning in mind and making up the meaning later.

A cryptographically secure hash function should have three more properties besides the two
mentioned above. First of all, it should be one-way, also known as pre-image resistant. Like
other “one-way” functions in cryptography, this means that it should be computationally
infeasible to compute an input to the hash function that would produce a given output.

3

(Note that I said “an input”, rather than “the input”! Since the input could be arbitrarily
long and the output length is fixed, there will be many inputs — infinitely many in theory
— that produce the same output. These are called collisions.) If Frank gets a hold of a
signed message digest for one of Alice’s messages, he shouldn’t be able to come up with a
new message that has the same digest. If he did, then he would also have a signature for the
new message, since the signature only depends on the digest. Bob wouldn’t be able to tell
that Alice had not signed the new message.

Furthermore, Frank shouldn’t be able to come up with his new message even if he has
Alice’s original message. Hash functions that prevent this are called second-preimage resis-
tant. In other words, if Frank has both the output of the hash function and an input that
produces that output, it should be computationally infeasible for him to come up with a
second input that also produces that output.

For many purposes, we would also like hash functions to be collision-resistant, meaning
that it should be computationally infeasible for someone to find two inputs that give the
same hash value. (Remember that collisions always exist for a hash function! But they
should be difficult to find.) One application of collision-resistance is to prevent Bob from
pulling a bait-and-switch on Alice. Suppose Alice agrees to buy Bob’s car for $5000. Bob
draws up a contract and presents it to Alice for her signature. However, it turns out that
Bob has found another message with the same digest. When Bob comes to collect his money,
he presents the second contract, which says that she promised to pay him $10000! Since
both messages have the same valid signature, Alice can’t prove that she really signed the
one with the lower amount.

2. How Hash Functions Work

Cryptographers have come up with many different basic plans for secure hash functions.
In fact, in the competition to choose a new standard hash function for the U.S. Government,
the National Institute of Standards and Technology (NIST) specifically chose five finalists
with different designs, so that an attack on one would be unlikely to disqualify the others
as well [15]. For example, the five finalists included a “HAIFA” construction, two “wide-
pipe Merkle-Damg̊ard” algorithms, a “sponge” construction, and a “Unique Block Iteration”
construction.

In fact, however, most of these constructions are conceptually descended from the Merkle-
Damg̊ard construction, which was invented in 1979 by Ralph Merkle. As shown in Figure 1,
a Merkle-Damg̊ard hash starts by splitting the message up into blocks (labeled M in the
figure) of a fixed size. The message is then padded at the end (“length padding”, labeled
LP), not only to make sure there are an even number of blocks but also to incorporate the
length of the message into the message itself. (This helps protect against a type of attack
called a “length extension” attack.)

The next necessary ingredient is an initialization vector, or IV. The IV and the first
message block are given as inputs to a one-way compression function, labeled as f in the
figure. This compression function should have all of the same properties that we want the
hash to have, except that instead of taking an arbitrary length input, it takes two fixed-
length inputs, one of which is the same size as the fixed-length output. Thus the function
“compresses” a fixed-length total input to a smaller fixed-length output. Ralph Merkle and
Ivan Damg̊ard each independently proved in 1989 that if the compression function in their

4

Figure 1. The Merkle-Damg̊ard construction.

construction is collision-resistant, then the hash function is collision-resistant. The output
of the compression function, called the chaining value, is used as one of the inputs to the
next compression function. The next message block is the other input to the compression
function, and this continues until all of the message blocks (including the padding) have been
used. The final step in the construction is an optional “finalization”, which might truncate
or further compress the last chaining value or might just add extra mixing. The output of
the finalization is the hash value of the message (labeled HV).

Many hash functions use the Merkle-Damg̊ard construction, with varying compression
functions and numbers of bits used at each step. Some of the most popular include MD4
(Message Digest algorithm 4), invented by Ron Rivest in 1990, MD5 (Message Digest al-
gorithm 5, an improved version of MD4), invented by Rivest in 1992, SHA (Secure Hash
Algorithm), developed by NIST and the NSA and adopted as a U.S. government standard in
1993, and its successors SHA-1 (a slight tweak of SHA, 1995), and SHA-2 (a major revision,
2001).

We will take MD5 as a representative example. (The official specification of MD5 can be
found in [9].) Each message block is 512 bits long, while the initialization vector, which is
specified by the official description, is 128 bits long. The compression function takes a 512-bit
input and a 128-bit input and produces a 128-bit output. The overview of the compression
function is shown in Figure 2. Inside the compression function the chaining value is split into
four 32-bit words, labeled A, B, C, and D in Figures 2 and 3, and the message block is split
into 16 32-bit words. The function is split into four “rounds”, each of which is composed of
16 “steps”. One step is shown in Figure 3.

In each step, words B, C, and D of the chaining value are combined using a non-linear
bitwise function (labeled F in Figure 3) which changes depending on the round. The result
of this is added to word A of the chaining value, a word of the message block (labeled M)
and a 32-bit constant (labeled K) which is different for each step. (Each word of the message
block is used once in each round, with the orders varying.) All these additions are done
modulo 232. The bits of this result are then rotated by a number of places which depends
on the step and added modulo 232 to the word B of the chaining value. Finally, this result
becomes word B of the chaining value and each other word rotates one place to the right.
After the last step of the last round, the initial words of the chaining value as they came
into the compression function are “fed forward” and added modulo 232 to the new values to
produce the final chaining value. There is no special finalization step after the last message
block is processed.

5

Figure 2. Overview of the MD5 compression function.

A B C D

+

M

F

+

+K

Rot

+

A B C D

Figure 3. One step of the MD5 compression function.

Key ingredients to note in MD5 are the combination of linear and nonlinear functions and
the combination of functions which act on bits and functions which act on words. Also note

6

that words are frequently combined to provide diffusion, and that there is feed-forward from
the beginning to the end of the compression function.

3. Teaching about Secure Hash Functions

During the Fall of 2000, I taught a course on “Cryptography and Society” at Duke Uni-
versity. (See [4] for more details of this course.) I had a section on RSA digital signatures,
and since one of themes of the course was how cryptography was used in practice, I wanted
to talk about secure hash functions. In addition, the course was designed for students not
majoring in math or computer science, so I wanted a hash function which would be easy for
such students. Since there were not a lot of resources for such courses at the time, I simply
made up my own hash function, which I later called “Josh’s Hash Algorithm”, or JHA.

My goals for this function were:

Simplicity: Students with limited experience should be able to do exercises with it
without a computer in a single class period, and

Security: It should be reasonably secure (preimage-resistant, second-preimage resis-
tant, and collision-resistant) given the previous goal.

JHA takes a string of letters and spaces and outputs an integer between 0 and 17 according
to the following rule:

hash = (7×# of vowels− 3×# of consonants + # of spaces2) mod 17

For example, the string “Hello my name is Alice” has a hash value of

(7× 8− 3× 10 + 42) mod 17 = 8.

How did this hash stack up against my design goals? Well, it did about as well with regard
to simplicity as one could hope for, although some decision had to be made with regard to
the letter “y”, and some students had to be reminded that the number of spaces was not the
same as the number of words. (These issues actually may have been good reinforcements
of the point that the specification of a hash function has to be public and unambiguous!)
JHA was less good with regard to security, however. It’s moderately secure with respect to
preimage attacks, especially if you restrict your message space to sensible English text. It is
not very secure with respect to second-preimage and collision attacks, however. It is often
possible to change one or a few vowels to other vowels and consonants to other consonants
in an English text and still get a sensible text, perhaps with a very different meaning!

In January 2010 I taught a similar course on cryptography and society at Manchester
College, and in May 2010 I taught a general education course on cryptography at Goshen
College, both in northern Indiana. Once again I wished to have a hash function with the
two goals above. By this time Barr’s textbook ([2]) had come out, and I was using it for my
main cryptography textbook in both courses. I referred above to one of the hash functions
described in that book, which also does fairly well with regard to the goal of simplicity.

7

However, as Barr points out in his Exercises ([2, Exercise 3.6.3, p. 241]), the function is not
particularly one-way, especially if one does not restrict the message space. The problem is
that there is no diffusion between the five columns, and that the operation is completely
linear.

Barr offers another relatively simple hash function in [2, Example 3.6.2, p. 236], this one
using essentially a Merkle-Damg̊ard structure on 8-bit blocks, but without length padding.
The compression function is a bitwise exclusive-or of the chaining value with the message
block followed by reversing the bits of the block in adjacent pairs. This is considerably more
secure than either of the hashes above, but I rejected it as too complicated for my audience
and classroom goals.

In the end, I went with a slightly modified version of JHA, which I called JHA-1:

hash = 5(7×# of vowels−3×# of consonants+# of spaces2) mod 17

For example, the string “Hello my name is Alice” has a hash value of

5(7×8−3×10+42) mod 17 = 9.

JHA-1 is even more secure with respect to preimage attacks, since they would involve
solving a (small) discrete logarithm problem, but it’s really no better with regard to the other
types of attacks. However, it admirably fit my simplicity goal. While teaching at Goshen
College, JHA-1 allowed me to do a classroom exercise where students wrote a short message,
computed its hash value, and then signed it with their own individual (small) RSA key.
(Students used a single computer present in the classroom to do the modular exponentiation
steps in JHA-1 and RSA.) As the students finished, they were instructed to put a slip of
paper with the message and signature in a pile and draw out a similar slip from another
student. Using the RSA public keys, which were listed on a blackboard in the classroom,
the students verified each others’ signatures. Along the way students sometimes discovered
mistakes which might have occurred in any of the hashing, signing, and verification steps,
but overall I felt the exercise was a success.1

4. JHA-2

With these experiences in mind, I decided in the Spring of 2011 to see if I could design a
better hash function for use in the classroom. In particular, I wanted to see if I could make
a function that was still fairly simple but displayed some resistance to second-preimage and
collision attacks. After some consideration I also added the two following design goals:

1This course met four days a week with most days consisting of a one-hour lecture, a one-hour break, and
then a two-hour block which was usually divided into about an hour of lecture and an hour of hands-on work.
One entire day was devoted to digital signatures and hash functions, with a general introduction and the
idea of RSA signatures before the break. After the break I covered the hash function from [2, Example 3.6.1,
p. 233] mentioned above, JHA-1, examples of hash functions and digital signatures, and the classroom
exercise. The students were already familiar with RSA encryption at this point.

8

Realism: It should use elements from hash functions that are actually used in the “real
world”, and

Optimization: It should be “optimized” to be easy to compute with the aid of a four
function calculator.2

While doing background research for this project, I came across three more “toy” hash
functions designed for classroom use, in addition to the ones from Barr’s book. (I’m sure
there are more out there!) Trappe and Washington ([14, Section 8.2, pp. 222–223]), and
Stallings ([11, pp. 336–337]) both give a hash function operating on n-bit blocks. This is
similar to Barr’s first hash except that addition is done modulo 2 and each row is rotated
one bit to the left before the addition. Both authors, however, acknowledge that this is still
very insecure owing to the lack of diffusion and nonlinearity.

Stallings ([11, Exercise 12.4, pp. 375–376]) also gives a description of the “Toy Tetragraph
Hash”, which he describes as “similar in spirit” to the Merkle-Damg̊ard hashes I listed above.
It uses 16-letter message blocks and chaining values consisting of four numbers modulo 26,
and thus also has some similarities to Barr’s first hash. It uses two rounds in the compression
function, however, and the second round adds diffusion by permuting each row in a different
manner before the message block is added once again. This was a very intriguing possibility,
and it did satisfy the goal of realism, but I eventually rejected it on two grounds. First,
the lack of nonlinearity leads to some weakness with respect to preimage attacks, as pointed
out by Stallings. And second, the many modulo 26 computations seemed to me to be two
difficult to perform on a four-function calculator, as required by the goal of optimization.

Stamp ([12, Exercise 5.9.16, p. 106]) mentions a “Bobcat” hash algorithm that he created
as a version of the 192-bit Tiger hash [1] scaled down to 48 bits. This does not seem suitable
for use without a computer. Stamp also mentions a 12-bit version of the hash. It appears that
this is merely the 48-bit hash with the output truncated to 12 bits as part of the finalization
step. It might be interesting to develop an actual 12-bit version of Tiger/Bobcat, along the
lines of the Simplified DES [10], Simplified AES [8], and Demitasse (a simplified TEA) [5]
algorithms.3 However, based on my experiences in the courses described in [4] and [5], I
think that this might be pushing the limits of what my target audience could adequately
carry out, in addition to violating the optimization design goal.

So I went back to the proverbial drawing board. The goal of realism suggested a Merkle-
Damg̊ard design, while optimization for four-function calculators suggested using decimal
digits rather than bits, and moduli that were powers of 10 rather than 26. The goal of
simplicity led me to use chaining values that were only two (decimal) digits long, and to
limit the number of rounds. The goal of security led to the use of both linear and nonlinear
functions, and to mix functions that operated on digits with those that operated on two-digit
numbers modulo 100. The result was a hash function I call JHA-2.

Each message block of JHA-2 consists of one letter, which is converted into two decimal
digits in the usual way. Length padding is added to the end in the form of a two-digit number

2I found in my classes in 2010 that despite more powerful calculators being fairly cheap and convenient,
nontechnical students often did not have them or did not bring them to class. However, most of them had
a cell phone, and most cell phones now include a four-function calculator!

3I suggest the name “Housecat” for the 12-bit version.
9

A B

+M N

x 7

+

A B

Figure 4. The JHA-2 compression function.

indicating the number of letters in the message. So if the input string is “Hello, my name is
Alice”, the message would become:

H e l l o m y n a m e i s A l i c e
07 04 11 11 14 12 24 13 00 12 04 08 18 00 11 08 02 04 18

I chose the initialization vector for JHA-2 to be 76.4 There is no special finalization for
the hash. The compression function of JHA-2 consists of a single round, which proceeds as
follows (see Figure 4):

(1) Add the chaining value (labeled AB in Figure 4) to the new message block (labeled
MN) modulo 100.

(2) Multiply the chaining value by 7, modulo 100.
(3) Reverse the digits of the chaining value.
(4) Add the initial digits of the chaining value to the new chaining value modulo 100.

Note that the first, second, and fourth steps are linear regarded modulo 100, but are not
linear in the tens digit modulo 10. Conversely, the third step is linear in each digit modulo
10, but is not linear modulo 100. The second step adds extra diffusion.5 The first step is of
course necessary to mix in the message block and the fourth step is feedforward.

Continuing with our earlier example, the beginning of the calculations would proceed:

4For 1976, the year in which the famous paper “New Directions in Cryptography” [3] was published.
5An early version without this step was shown to be insecure by Michael Pridal-LoPiccolo, an undergrad-

uate at Rose-Hulman who was able to find two-letter preimages.
10

7 6
+ 0 7 (new block)

8 3
× 7

8 1
←→
1 8

+ 7 6 (feedforward)
9 4

+ 0 4 (new block)
...

And the results after each message block would be:

H e l l o m y n a m e i s A l i c e
07 04 11 11 14 12 24 13 00 12 04 08 18 00 11 08 02 04 18

76 94 62 73 61 13 70 55 22 67 02 26 09 07 01 49 48 53 52 61

The final value of the hash is therefore 61.

5. Evaluation of JHA-2

How well does JHA-2 fit its design goals? I have not yet had a chance to teach a class
using it, so I can’t say for sure whether it is simple enough to use in an in-class exercise, but
based on previous experience I have high hopes. (If any readers try it out for themselves,
please let me know how it went!) I timed myself on the 11-letter string “This is a test” and
it took me about 6 minutes with the aid of a table of letter-to-number equivalences and a
four-function calculator. Unfortunately, it took me three tries to get it right! By the third
try I had gotten it down to 4 minutes, and established that the most common mistake for
me was adding the wrong number for the feedforward step. I tried various work grids in
order to combat this, and the one that seemed to work best looked like:

T h i s i s a t e s t
feedforward 76 32 · · · 45

message 19 07 08 18 08 18 00 19 04 18 19 11

sum 95
...

. . . 56
times 7 65 92
reverse 56 29

plus feedforward 32 45 74

The experience was also very instructive in terms of illustrating an important feature of hash
functions of this sort — a single change quickly propagates through the calculations! This is
desirable, because it leads to the avalanche effect, namely that a small change in your input
results in a large change in the output. This makes it more difficult to mount the sorts of

11

attacks we have discussed. However, it also means that once you make your first mistake,
generally none of the rest of your work can be salvaged.

My calculations of hash values also suggested that the algorithm was doing well with
regard to optimization for four-function calculators. It should be pointed out to students
reducing the chaining value modulo 100 is the same as dropping all but the last two digits,
and that it does not matter whether this is done for every operation or only selected ones.
If the student takes this to heart, and the calculator operates in the common fashion of
ignoring arithmetic precedence and storing each value in an accumulator as it is calculated,
then the only point at which the accumulator (i.e., chaining value) needs to be reinitialized
is when the digits are reversed.

As far as realism is concerned, I mentioned earlier that JHA-2 uses the Merkle-Damg̊ard
construction, linear and nonlinear functions, diffusion, and feedforward. A constant could
be added to the chaining value during each round, like in MD5, but I decided it would add
too much complication for too little value in security and realism.6

Security of hash functions, like that of ciphers, is generally measured by the time necessary
to carry out an attack by an opponent with a specified set of resources. Since JHA-2 was
designed to be feasible without a computer, we should probably not expect it to stand up to
attacks using a computer. In fact, since there are only 100 possible hash values, a brute force
attack would be expected to find a preimage or second preimage after 100 tries on average.
This is easily done with a computer but probably beyond the patience of even a dedicated
student. On the other hand, an entire class of 20 to 30 students might reasonably attempt
it using short inputs. This might illustrate that JHA-2 could be considered secure against
individuals but not against medium-sized groups.

For a collision attack, however, we are interested in finding any two messages with the same
hash value, with nothing specified. This is much easier, and in fact the “birthday paradox”
effect says that we would expect a collision to occur after an average of approximately√

(π/2)H tries, where H is the number of hash values. With 100 hash values, this comes
out to approximately 12.5 tries on average, which is just within the realm of possibility for
a single individual — perhaps as a homework problem for a particularly dedicated student!
This probably still makes JHA-2 secure enough to deter the casual opponent, however. If
more security against brute-force attacks was desired, it would not be hard to extend the
hash function to three, four, or even more digits in the hash value and chaining value. In
such a case, the multiplication by 7 should probably be changed to a larger value. (I would
suggest no fewer digits than one less than in the chaining value, for maximum diffusion.)
Also a decision would have to be made on how to permute the digits in the next-to-last
operation of the round. (A rotation of one place to the right would mirror the choice made
in MD-5.)

JHA-2 is also (of course) vulnerable to other attacks which apply generically to all hash
functions based on the Merkle-Damg̊ard construction, such as the “Nostradamus attack”.
(See [6] or [13, Section 5.2.4].) This attack relies on collisions in the underlying compression
function to find “chosen target forced prefix” preimages — i.e., given a target hash value

6On the other hand, the Tiger hash function [1] uses multiplication by a different constant in each round,
rather than addition. So perhaps the multiplication by 7 in JHA-2 could be looked on in this manner. It
should also be noted, however, that much of the security purpose of the constant comes from not using
different constants in different steps or rounds, in order to eliminate symmetry that could be exploited.

12

the attack can find a preimage message which starts with a specified prefix and ends with
a random but (more or less) meaningful suffix. It is likely that differential attacks such as
those which have been discovered against MD4 and MD5 (see [13, Sections 5.3 and 5.4]) and
more recently SHA and SHA-1 are also possible against JHA-2, although I have not worked
them out in detail. Also, I doubt that they would be faster than brute force against the
unmodified algorithm, although they could very well be practical against a version with more
digits in the hash value. Working out the details of such an attack seems like an excellent
student project and I look forward to hearing of such a thing!

6. Conclusion

The goal of this project was certainly not to develop a state-of-the-art secure hash function.
Nor was it necessarily to develop a simplified version of a common hash function, similar
to what was done for block ciphers in [10], [8], and [5], although that might also be an
interesting project. Rather, the goal was to create a hash function that was similar enough
to common hash functions to be realistic while still being practical for students with limited
mathematical and computer backgrounds. The proof of such a thing can only come from
classroom experience, of course. Hopefully one of you reading this will soon be in a position
to give it such a test. I eagerly await the result!

References

1. Anderson, R. and Biham, E. 1996. Tiger: A Fast New Hash Function. Fast Software Encryption: Third In-
ternational Workshop (Cambridge, UK, February 21–23, 1996), Proceedings (Gollmann, D., ed.), LNCS,
vol. 1039, Springer, Berlin, pp. 89–97.

2. Barr, T. H. 2001. Invitation to Cryptology, Upper Saddle River, NJ: Prentice Hall.
3. Diffie, W. and Hellman, M. E. 1976. New Directions in Cryptography. IEEE Transactions on Information

Theory. 22(6): 644–654.
4. Holden, J. 2004. A Comparison of Cryptography Courses. Cryptologia. 28(2): 97–111, DOI 10.1080/0161-

110491892809.
5. . 2013. Demitasse: A “Small” Version of the Tiny Encryption Algorithm and its Use in a Class-

room Setting. Cryptologia. 37(1): 74–83, DOI 10.1080/01611194.2012.660237.
6. Kelsey, J. and Kohno, T. 2006. Herding Hash Functions and the Nostradamus Attack, Advances in

Cryptology — EUROCRYPT 2006 (Vaudenay, S., ed.), LNCS, vol. 4004, Springer, Berlin, pp. 183–200.
7. Meadows, J. 2007. Limitations on the publishing of scientific research, The History of Information Secu-

rity (Leeuw, K. De and Bergstra, J., eds.), Elsevier Science B.V., Amsterdam, pp. 29–51.
8. Musa, M. A., Schaefer, E. F., and Wedig, S. 2003. A Simplified AES Algorithm and its Linear and

Differential Cryptanalyses. Cryptologia. 27(2): 148–177, DOI 10.1080/0161-110391891838.
9. Rivest, R. April 1992. The MD5 Message-Digest Algorithm, Technical Report 1321, Request for Com-

ments, Internet Engineering Task Force, available at http://tools.ietf.org/html/rfc1321.
10. Schaefer, E. F. 1996. A Simplified Data Encryption Standard Algorithm. Cryptologia. 20(1): 77–84, DOI

10.1080/0161-119691884799.
11. Stallings, W. 2005. Cryptography and Network Security, 4th ed., Upper Saddle River, NJ: Prentice Hall.
12. Stamp, M. 2005. Information Security: Principles and Practice, Hoboken, NJ: Wiley-Interscience.
13. Stamp, M. and Low, R. M. 2007. Applied Cryptanalysis: Breaking Ciphers in the Real World, Hoboken,

NJ: Wiley-IEEE.
14. Trappe, W. and Washington, L. C. 2005. Introduction to Cryptography with Coding Theory, 2nd ed.,

Upper Saddle River, NJ: Prentice Hall.
13

15. Turan, M. S., Perlner, R., Bassham, L. E., Burr, W., Chang, D., Chang, S., Dworkin, M. J., Kelsey, J. M.,
Paul, S., and Peralta, R. February 2011. Status Report on the Second Round of the SHA-3 Cryptographic
Hash Algorithm Competition, Technical Report 7764, NIST Interagency Report, NIST, available at http:
//csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Round2_Report_NISTIR_7764.pdf.

16. van Helden, A. 1974. “Annulo Cingitur”: The Solution to the Problem of Saturn. Journal for the History
of Astronomy. 5: 155–174.

17. van Maanen, A. 1926. Review: Ouvres Compltes de Christiaan Huygens, Vol. XV. The Astrophysical
Journal. 63: 375–376.

14

Biographical Sketch

Joshua Holden is currently an Associate Professor in the Mathematics Department of
Rose-Hulman Institute of Technology, an undergraduate engineering college in Indiana. He
received his Ph.D. from Brown University in 1998 and held postdoctoral positions at the
University of Massachusetts at Amherst and Duke University. His research interests are
in computational and algebraic number theory, cryptography, and the application of graph
theory to fiber arts. His teaching interests include the use of technology in teaching and
the teaching of mathematics to computer science majors, as well as the use of historically
informed pedagogy. His non-mathematical interests used to include fiber arts, but that now
seems to be a mathematical interest. Still largely in the non-mathematical category are his
interests in science fiction and music, both classical and contemporary.

Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN
47803, USA

E-mail address: holden@rose-hulman.edu

15

