
THE LP -CONTINUITY OF WAVE OPERATORS FOR FRACTIONAL ORDER
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M. BURAK ERDOĞAN, MICHAEL GOLDBERG AND WILLIAM R. GREEN

Abstract. We consider fractional Schrödinger operators H = (−∆)α + V (x) in n dimensions with

real-valued potential V when n > 2α, α > 1. We show that the wave operators extend to bounded

operators on Lp(Rn) for all 1 ≤ p ≤ ∞ under conditions on the potential that depend on n and

α analogously to the case when α ∈ N. As a consequence, we deduce a family of dispersive and

Strichartz estimates for the perturbed fractional Schrödinger operator.

1. Introduction

We study the non-local fractional Schrödinger equation

iψt = (−∆)αψ + V ψ, x ∈ Rn, α > 1, α ̸∈ N.

We consider spatial dimensions n > 2α, and V is a real-valued, decaying potential. When α ̸∈ N, the

non-local operator (−∆)α is defined via the Fourier multiplier |ξ|2α, that is (−∆)αf = F−1(|ξ|2αf̂(ξ)).

We denote the free fractional Schrödinger operator by H0 = (−∆)α, and the perturbed operator by

H = (−∆)α + V (x).

Similar to the integer order Schrödinger operators, for the potentials we consider there is a Weyl

criterion and σac(H) = σac(H0) = [0,∞). When α ̸= 1, decay of the potential is generally not

sufficient to ensure the lack of eigenvalues embedded in the continuous spectrum for the fractional order

operators. In [10], Cuenin constructs examples where embedded eigenvalues can occur for generalized

Schrödinger operators. On the other hand, Ishida, Lőrinczi and Sasaki provided conditions on the

potential when 0 < α < 2 in [37] for which H has no embedded eigenvalues. We leave the lack of

embedded eigenvalues as an overarching assumption.

We study the Lp boundedness of the wave operators, which are defined by

W± = s – lim
t→±∞

eitHe−itH0 .

As in the classical Schrödinger operators, see the work of Agmon, [1], Hörmander, [36] and Schechter,

[52], sufficient decay of the potential at infinity to ensures that the wave operators exist and are
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asymptotically complete, [38, 62]. In particular we have the intertwining identity

f(H)Pac(H) =W±f((−∆)α)W ∗
±.(1)

Here Pac(H) is the projection onto the absolutely continuous spectral subspace ofH, and f is any Borel

function. Asymptotic completeness and lack of embedded eigenvalues for magnetic fractional equations

were studied in [54]. For a more detailed discussion of the existence and asymptotic completeness see

[62].

Fractional Schrödinger equations have garnered interest in the physics literature, see for example

[44, 45], where the Feynman path integral is taken over Lévy flight paths in place of Brownian paths.

For applications in optics see [46], further applications are considered in [33]. Mathematically, one

can view fractional Schrödinger equations as models of nonlocal dispersive equations.

We use the notation ⟨x⟩ to denote (1 + |x|2) 1
2 , F(f) or f̂ to denote the Fourier transform of f .

We write A ≲ B to say that there exists a constant C with A ≤ CB, and write a− := a − ϵ and

a+ := a + ϵ for some ϵ > 0 throughout the paper. We use the norm ∥f∥Hδ = ∥⟨·⟩δ f̂(·)∥2. We first

state a small potential result.

Theorem 1.1. Fix α > 1 and let n > 2α. Assume that the V is a real-valued potential on Rn and

fix 0 < δ ≪ 1. Then ∃C = C(δ, n, α) > 0 so that the wave operators extend to bounded operators on

Lp(Rn) for all 1 ≤ p ≤ ∞, provided that

i)
∥∥⟨·⟩ 4α+1−n

2 +δV (·)
∥∥
2
< C when 2α < n < 4α− 1,

ii)
∥∥⟨·⟩1+δV (·)

∥∥
Hδ < C when n = 4α− 1,

iii)
∥∥F(⟨·⟩σV (·))

∥∥
L

n−1−δ
n−2α−δ

< C for some σ > 2n−4α
n−1−δ + δ when n > 4α− 1.

The assumptions on the potential are the generalizations of the α = m ∈ N case studied in [16]

obtained by bounding the contribution of the Born series terms in Section 2 below. There are technical

hurdles to overcome to adapt the argument to the non-local fractional Schrödinger operators, and the

analysis is rather delicate.

Furthermore, one may remove the smallness assumption above provided V decays sufficiently at

spatial infinity. We write n⋆ to denote n+ 4 if n is odd and n+ 3 if n is even. We define zero energy

to be regular if there are no non-trivial distributional solutions to Hψ = 0 with ⟨x⟩−α−ψ(x) ∈ L2(Rn)

when 2α < n ≤ 4α and ψ ∈ L2(Rn) when n > 4α, which correspond to resonances or eigenvalues

respectively, see [15]. We show

Theorem 1.2. Fix α > 1 and let n > 2α. Assume that the V is a real-valued potential on Rn so that

i) |V (x)| ≲ ⟨x⟩−β for some β > n⋆ ,

ii) ∥⟨·⟩1+V (·)∥H0+ <∞ when n = 4α− 1,



WAVE OPERATORS FOR FRACTIONAL ORDER SCHRÖDINGER OPERATORS 3

iii) for some 0 < δ ≪ 1 and σ > 2n−4α
n−1−δ , ∥F(⟨·⟩σV (·))∥

L
n−1−δ
n−2α−δ

<∞ when n > 4α− 1,

iv) H = (−∆)α + V (x) has no positive eigenvalues and zero energy is regular.

Then, the wave operators extend to bounded operators on Lp(Rn) for all 1 ≤ p ≤ ∞.

These results are, to the best of our knowledge, the first results studying Lp-boundedness of the

wave operators for the non-local fractional Schrödinger operators.

From the intertwining identity (1) one may obtain Lp-based mapping properties for the more com-

plicated, perturbed operator f(H)Pac(H) from the simpler free operator f((−∆)α). The boundedness

of the wave operators on Lp(Rn) for any choice of p ≥ 2 with the function f(·) = e−it(·) yield the

family of dispersive estimates

Corollary 1.3. Under the conditions of Theorem 1.1 or 1.2, for any 1 ≤ p ≤ 2 we have the following

family of dispersive bounds

∥e−itHPac(H)∥Lp→Lp′ ≲ |t|
n
α ( 1

2−
1
p ),(2)

where p′ is the Hölder conjugate of p.

In particular in all dimensions n > 2α, we have the global bounds

∥e−itHPac(H)∥L1→L∞ ≲ |t|− n
2α ,

which extends the recent work of the authors, [15], to dimensions n > 4α− 1. Another consequence,

following the seminal work of Ginibre and Velo, [28], is a family of Strichartz estimates:

Corollary 1.4. Under the conditions of Theorem 1.1 or 1.2, we have

∥e−itHPac(H)f∥Lq
tL

r
x
≲ ∥f∥L2 ,

2

q
=
n

α

(
1

2
− 1

r

)
, 2 ≤ r <∞.

Noting that the Fourier transform of ei|ξ|
2α |ξ|γ−n is bounded when 1

2 < α and 0 < γ ≤ nα, by

scaling the free operator satisfies the bounds

∥e−it(−∆)α(−∆)
γ−n

2 ∥L1→L∞ ≲ |t|−
γ
2α .

We have the following corollary. Similar bounds were proved in [14] for integer α ∈ (n4 ,
n
2 ).

Corollary 1.5. Under the conditions of Theorem 1.1 or 1.2, for any 0 < γ ≤ nα we have the following

family of dispersive bounds

∥e−itHH
γ−n
2α Pac(H)∥L1→L∞ ≲ |t|−

γ
2α .
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This work is inspired by previous work of the first and third authors, [16, 17], studying the bound-

edness of the wave operators when α = m ∈ N. There are several technical challenges in this

adaptation, such as the lack of a “splitting identity” that allows one to explicitly equate the integer

order Schrödinger resolvents to the more-well known second order resolvent, see (4) below.

There has been substantial work on the Lp(Rn) boundedness of the wave operators when α =

m ∈ N, with recent growth in the literature when m > 1. The first higher order result, when

(m,n) = (2, 3) was established by the second and third authors in 2020, [27]. The first and second

authors extended the range to (m,n) for all n > 2m in [16, 17]. Mizutani, Wan, and Yao studied

the case of (m,n) = (2, 1) in [48], and studied the endpoints and effect of threshold resonances in the

(m,n) = (2, 3) case in [49, 50]. Galtbayar and Yajima consider the case of (m,n) = (2, 4) in [24].

The study of the wave operators when m > 1 partially built upon work on dispersive estimates.

Feng, Soffer, Wu and Yao proved “local dispersive estimates” on the solution operator as a map

between weighted L2-based in [22]. The third author and Toprak, [31], along with the first author,

[20], provided “global dispersive estimates” considering the solution operator as a map from L1 to

L∞ for the fourth order operator in dimensions n = 4 and n = 3 respectively. The authors recently

proved dispersive estimates for scaling-critical potentials when 2m < n < 4m, [14].

The wave operators for the usual Schrödinger operator −∆ + V , when m = 1 are well-studied,

beginning with the pioneering works of Yajima, [55, 56, 57]. Which inspired further work when m = 1

in all dimensions n ≥ 1, see [40, 41, 11, 47, 58, 59] for example. On R3, Beceanu and Schlag obtained

detailed structure formulas for the wave operators, [2, 3, 4]. The L2 existence and other properties

of the higher order wave operators have been studied by many authors, including Agmon [1], Kuroda

[42, 43], Hörmander [36], and Schechter, [52, 53].

There has been much interest in non-linear fractional Schrödinger equations, see for example [7,

35, 32, 21, 51, 12, 5], studying well-posedness, blow-up and scattering. However, the linear analysis

is more limited with results focusing on the free equation iut = (−∆)su. Cho, Ozawa, and Xia

studied dispersive and Strichartz estimates for the free operator assuming initial data in distorted

Besov spaces, [9]. Further study of Strichartz estimates for related operators may be found in [8, 30],

for example. To the best of our knowledge, the only result on dispersive estimates for a perturbed

equation is that of the authors in [15].

Our analysis relies on careful study of the resolvent operators, which are defined by RV (λ) =

((−∆)α + V − λ)−1 and R0(λ) = ((−∆)α − λ)−1. Our usual starting point to study the wave

operators is the stationary representation

W+u = u− 1

2πi

∫ ∞

0

R+
V (λ)V [R+

0 (λ)−R−
0 (λ)]u dλ,
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here the superscripts ‘+’ and ‘-’ denote the usual limiting values as λ approaches the positive real

line from above and below, [15]. Since the identity operator is bounded on Lp, we need only bound

the second term involving the integral. It is convenient to make the change of variables λ 7→ λ2α and

consider the integral kernel of the operator

− α

πi

∫ ∞

0

λ2α−1R+
V (λ

2α)V [R+
0 −R−

0 ](λ
2α) dλ.(3)

Our result in Theorem 1.1 follows by using resolvent identities to expand R+
V in an infinite series and

directly summing the series. To remove the smallness assumption to show that the operator defined

in (3) extends to a bounded operator on Lp requires different strategies in the low (0 < λ ≪ 1) and

high (λ ≳ 1) energy regimes. To delineate these cases, we use the even, smooth cut-off function χ

with χ(λ) = 1 for |λ| < λ0 for some sufficiently small λ0 ≪ 1, and χ(λ) = 0 for |λ| > 2λ0, as well as

the complimentary cut-off χ̃(λ) = 1− χ(λ).

When α = m ∈ N, we have the splitting identity for z ∈ C \ [0,∞), (c.f. [22])

(4) R0(z)(x, y) := ((−∆)m − z)−1(x, y) =
1

mz1−
1
m

m−1∑
ℓ=0

ωℓR0(ωℓz
1
m )(x, y)

where ωℓ = exp(i2πℓ/m) are the mth roots of unity, R0(z) = (−∆ − z)−1 is the usual (2nd order)

Schrödinger resolvent. For the fractional operators, when α /∈ N, we lack this explicit relationship

to the m = 1 Schrödinger resolvents. We instead utilize the representations developed in [15] stated

in Proposition 3.3 below as well as directly bounding Fourier multipliers corresponding to the Born

series in Theorem 2.1 below.

We note that the different assumptions on the potential we impose based on the size of n versus

α in Theorems 1.1 and 1.2 are natural. Smoothness of the potential is required for the integer order

Schrödinger operator in high dimensions since the kernel free resolvent R±
0 (λ

2) grows like λ
n+1
2 −2m as

the spectral parameter λ → ∞. This causes the L1 → L∞ dispersive estimates to fail in dimensions

greater than 4m − 1 without some measure of smoothness on the potential, see the counterexample

constructed by the second author and Visan [29], later extended by the authors to the higher order

case, [13]. In particular, when n > 4m − 1 one can construct a compactly supported potential

V ∈ Cα(Rn) for all 0 ≤ α < n+1
2 − 2m − n

p for which the wave operators are unbounded on Lp(Rn)

for 2n
n−4m+1 < p ≤ ∞. As in the integer order analysis, [55, 16], we impose a condition on the FLr

norm of the potential, which requires sufficient smoothness. The ϵ-smoothness requirement in the

case n = 4α− 1 could be an artifact of our methods.

We assume that zero energy is regular, that is there are no threshold resonances or eigenvalues.

These can be characterized in terms of distributional solutions to Hψ = 0, with ψ in weighted L2(Rn)

spaces, see section 8 of [22] for the integer order case and [15] for the fractional case. The effect of
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zero energy resonances or eigenvalues on the Lp-boundedness of the integer order wave operators is

well-studied. In the classical m = 1 case the wave operators are generically bounded on 1 < p < n
2

in the presence of a threshold obstruction when n ≥ 3, while further orthogonality conditions allows

one to obtain a larger range, [59, 26, 60, 61]. In the higher order case, m ∈ N and m > 1, the wave

operators are bounded for 1 < p < n
2m in the presence of zero energy eigenvalues when n > 4m, [18].

In lower dimensions, there is a more complicated resonance structure, see [6] for odd n. In the case of

an eigenvalue only, if the zero energy eigenspace is orthogonal to xαV (x) for multi-indices |α| < k0,

the wave operators are bounded on 1 ≤ p < n
2m−k0

and one can recover p = ∞ if k0 > 2m, [19].

One expects analogous results would hold for the fractional operators in the presences of zero energy

obstructions, we plan to address this in a future paper.

The paper is organized as follows. In Section 2 we begin by analyzing the Born series terms that

arise by iterating the resolvent identity for the perturbed resolvent in the stationary representation,

(3). Next in Section 3, we control the contribution of the tail of the Born series in the low energy

regime, when the spectral parameter λ is in a neighborhood of zero. In Section 4, we provide the

technical arguments about inverse operators in the low energy regime to complete the low energy

analysis. In Section 5 we control the remainder in the high energy regime, when λ ≳ 1.

2. Born Series

By iterating the resolvent identity, one has the expansion

RV (z) =

2ℓ∑
J=0

[
R0(z)(−VR0(z))

J
]
− (R0(z)V )ℓRV (z)(VR0(z))

ℓ.(5)

Consider the contribution of an arbitrary summand in the Born series to (3),

WJ := (−1)J+1 1

2πi

∫ ∞

0

(R+
0 (λ)V )J [R+

0 (λ)−R−
0 (λ)] dλ.

In this section, we modify the proof in [16], which was inspired by Yajima’s work at [55] for the

classical Schrödinger, to control the Born series terms for the fractional Schrödinger operators. We

prove that WJ extends to a bounded operator on Lp(Rn), 1 ≤ p ≤ ∞:

Theorem 2.1. Fix α > 1, a natural number n > 2α, 1 ≤ p ≤ ∞, and 0 < δ ≪ 1. Then ∃C =

C(δ, n, α) > 0 so that for 2α < n < 4α− 1, we have

∥WJ∥Lp→Lp ≤ CJ∥⟨·⟩
4α+1−n

2 +δV (·)∥JL2 ,

for n = 4α− 1, we have

∥WJ∥Lp→Lp ≤ CJ∥⟨x⟩1+δV ∥JHδ ,
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for n > 4α− 1, we have

∥WJ∥Lp→Lp ≤ CJ∥F(⟨x⟩
2n−4α
n−1−δ+δV )∥J

L
n−1−δ
n−2α−δ

.

In what follows we will ignore most implicit constants; the factor CJ accounts for their contribution

depending on n, α. The small potential result, Theorem 1.1, follows from these inequalities.

As in [55, 16], we bound the adjoint operator ZJ =W ∗
J on Lp, which for fixed f ∈ S is defined by

(6) ZJf(x) = lim
ϵ1→0+

· · · lim
ϵJ→0+

lim
ϵ0→0+

ZJ,⃗ϵ,ϵ0f(x),

where

ZJ,⃗ϵ,ϵ0f(x) :=
1

2πi

∫
R

[
R0(λ− iϵ0)VR0(λ+ iϵ1) · · ·VR0(λ+ iϵJ)f

]
(x)dλ.

As in [55], it suffices to prove that the limit above exists in Lp and the bounds stated in the theorem

hold for f ∈ S and V̂ ∈ C∞
0 . Following the steps in page 7 and 8 of [16], we write

(7) ZJf(x)

= lim
ϵ1→0+

· · · lim
ϵJ→0+

∫
Rn

Tα
k1,ϵ1

{∫
Rn

Tα
k2,ϵ2

{
· · ·

∫
Rn

KJ(k1, k2, . . . , kJ)T
α
kJ ,ϵJ fkJ

dkJ

}
· · ·

}
dk2

}
dk1,

where KJ(k1, k2, . . . , kJ) :=
∏J

j=1 V̂ (kj − kj−1) (with k0 := 0) and fkJ
(x) := eikJ ·xf(x), and

(8) Tα
k,ϵf = F−1

(
f̂(ξ)

|ξ − k|2α − |ξ|2α − iϵ

)
.

Accordingly, we need to understand the operators Tα
k,ϵ. Let

(9) pω(ξ) :=
|ξ − ω|2 − |ξ|2

|ξ − ω|2α − |ξ|2α
, where ω =

k

|k|
∈ Sn−1.

Unlike the case when α ∈ N, we cannot neatly factor here. We therefore have

Tα
k,ϵf =

1

2i|k|2α−1
F−1

(
pω(ξ/|k|)f̂(ξ)

− i|k|
2 + iω · ξ − ϵpω(ξ/|k|)

2|k|2α−1

)
.

It is easy to see that pω(ξ) ≥ 0, in fact, the proof of Lemma 2.2 below implies that pω(ξ) ≈ ⟨ξ⟩2−2α > 0.

Writing

1

− i|k|
2 + iω · ξ − ϵpω(ξ/|k|)

2|k|2α−1

= −
∫ ∞

0

e−
i|k|t

2 +itω·ξe
− ϵpω(ξ/|k|)

2|k|2α−1 t
dt,

we obtain

F−1

(
pω(ξ/|k|)f̂(ξ)

− i|k|
2 + iω · ξ − ϵpω(ξ/|k|)

2|k|2α−1

)
(x) = −

∫ ∞

0

e−
i|k|t

2 hk, ϵt

2|k|2α−1
∗ f(x+ tω)dt,

where ∗ denotes convolution and

hk,ϵ = F−1
(
pω(ξ/|k|)e−ϵpω(ξ/|k|)

)
.
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With this notation, we have

Tα
k,ϵf(x) =

i

2|k|2α−1

∫ ∞

0

∫
Rn

e−i|k|t/2hk, ϵt

2|k|2α−1
(y)f(x− y + tω) dy dt.

To study the limit as ϵ→ 0+, we need the following lemma:

Lemma 2.2. We have the following bounds (with k = sω, s > 0, ω ∈ Sn−1)∥∥ sup
ϵ>0

hk,ϵ
∥∥
L1 ≲ 1,

∥∥ sup
ϵ>0

|∂jshsω, ϵ

s2α−1
|
∥∥
L1 ≲ s−j , j = 1, 2.

Furthermore, hk,ϵ converges to hk := hk,0 and ∂jshsω, ϵ

s2α−1
converges to ∂jshk as ϵ → 0 a.e. and in

L1, and hk satisfies the same bounds above.

To prove this lemma, we need the following lemmas from [15]:

Lemma 2.3. If g compactly supported on Rn, and is smooth on Rn \ {0} with |∇Ng(ξ)| ≲ |ξ|γ−N

for some γ > −n and N = 0, 1, . . . for ξ ̸= 0. Then |∇j ĝ(x)| ≲ ⟨x⟩−n−γ−j, j=0,1,2,... In particular,

ĝ ∈ L1 if γ > 0.

Lemma 2.4. Let g be a smooth function, supported away from zero on Rn, that satisfies |∇Ng(ξ)| ≲

|ξ|γ−N for some γ < 0 and N = 0, 1, 2, . . . . Then ĝ is a smooth function on Rn \ {0} satisfying

|∇j ĝ(x)| ≲


|x|−γ−n−j if γ + j > −n,

⟨log |x|⟩ if γ + j = −n,

1 if γ + j < −n.

Morever for |x| ≳ 1, |∇j ĝ(x)| ≲ |x|−M for all M, j.

Proof of Lemma 2.2. We first prove the claims for hk. Note that

hsω(x) = snF−1pω(xs) = snhω(sx)

Therefore ∥hsω∥L1 = ∥hω∥L1 and we may take s = 1. Without loss of generality, we also assume that

ω = e1. We decompose pe1 into three pieces, when ξ is near zero, near e1, and away from both. We

write pe1 = p1 + p2 + p3 respectively defined by smooth cut-offs and define hi = F−1pi.

First, we consider p1(ξ) = pω(ξ)χ(100ξ) and write

(10) p1(ξ) := ϕ(ξ) + g(ξ), where ϕ(ξ) = χ(100ξ)
1− 2ξ1

|ξ − e1|2α
.

Note that ϕ ∈ S(Rn), and

g(ξ) =

[
1− 2ξ1

|ξ − e1|2α − |ξ|2α
− 1− 2ξ1

|ξ − e1|2α

]
χ(100ξ),
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is easily seen to satisfy the hypotheses of Lemma 2.3. So that

|F [χ(100·)pω(·)](x)| = |h1(x)| ≲ ⟨x⟩−n−2α.

Moreover, analogous bounds hold for p2(ξ) = χ(100|ξ − ω|)pω(ξ) and hence h2.

We define χ3(·) = 1− χ(100·)− χ(100| · −ω|), and consider p3(ξ) = χ3(ξ)pω(ξ). Here we note that

p3(ξ) = χ3(ξ)
1− 2ξ1

(|ξ|2 + 1− 2ξ1)α − |ξ|2α
= χ3(ξ)|ξ|2−2αη

(
1− 2ξ1
|ξ|2

)
,

where

η(z) =
z

(1 + z)α − 1
χ[−1+c,C](z).

Here χ[−1+c,C](z) is smooth cut-off to the interval [−1 + c, C] for some c, C > 0. Note that, on the

support of χ3(ξ), we have
1−2ξ1
|ξ|2 ∈ [−1+c, C]. Since η is analytic and bounded in an open neighborhood

of this interval in the complex plane (the singularity at z = 0 is removable), η has bounded derivatives

to arbitrary order.1 Using the chain rule, we see that

|∇Np3(ξ)| ≲ ⟨ξ⟩2−2α−N .

Therefore, using Lemma 2.4, we conclude that

h3(x) = F−1(p3)(x) = O
(
min(|x|−n−1, |x|−n+2α−2)

)
,

which implies that h3 ∈ L1 (since α > 1). This yields the claim for j = 0.

For j > 0, note that

∂sF−1p3(sx) = x · [∇F−1p3](xs) =
1

s
F−1(∇ · ξ p3(ξ))(xs).

Similarly, (s∂s)
ℓF−1p3(sx) = F−1((∇ · ξ)ℓp3(ξ))(xs). Therefore,

|∂jssnF−1p3(sx)| ≲
j∑

ℓ=0

sn+ℓ−js−ℓ|F−1((∇ · ξ)ℓp3(ξ))(xs)|.

The claim for h3 = F−1p3 follows from this as above since (∇ · ξ)ℓp3(ξ) satisfies the same bounds as

p3(ξ).

We now turn to p1, and the proof follows as above since (∇ · ξ)ℓg satisfies the same bounds as g.

For p2, we write

p2(ξ) = χ(100|ξ − e1|)
2ξ1 − 1

|ξ|2α
+ g2(ξ),

and

g2(ξ) =

[
1− 2ξ1

|ξ − e1|2α − |ξ|2α
− 2ξ1 − 1

|ξ|2α

]
χ(100|ξ − e1|).

1Also note that η ≳ 1 on the interval [−1+c, C], which implies that on the support of χ3, pω(ξ) ≈ |ξ|2−2α. Observing

that pw ≈ 1 on the support of χ1 + χ2 implies that pω(ξ) ≈ ⟨ξ⟩2−2α.
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Now, (∇· ξ)ℓg2(ξ) satisfies the hypotheses of Lemma 2.3 (centered at ξ = e1 instead of zero) for ℓ ≤ 2

and γ = 2α− 2 > 0.

Now, we consider hk,ϵ. Let Hω(ϵ, x) = F−1
(
pωe

−ϵpω

)
(x). We first consider

H3(ϵ, x) := F−1
(
χ3pωe

−ϵpω

)
(x) = F−1

(
p3e

−ϵpω

)
(x).

Using the bounds on the derivative of p3 and noting that supα≥0 α
Ne−α ≲ 1 for any N ≥ 0, and that

|∇jpω| ≲ |∇jp3| on the support of χ3, and that 0 ≤ p3 ≤ pω, we conclude that∣∣∇N
ξ [p3(ξ)e

−ϵpω(ξ)]
∣∣ ≲ 1

⟨ξ⟩2α−2+N
, N = 0, 1, 2, . . .

Therefore we have

(11) |H3(ϵ, x)| = |F−1(p3e
−ϵpω )(x)| ≲ min(|x|−n−1, |x|−n+2α−2),

uniformly in ϵ > 0. This yields the claim for j = 0 for the contribution of H3 to hk,ϵ = snHω(ϵ, sx).

We now turn to

H1(ϵ, x) := F−1
(
χ1pωe

−ϵpω

)
(x) = F−1

(
p1e

−ϵp̃1

)
(x),

where p̃1(ξ) = χ(10ξ)pω(ξ). Using (10), we have p1 = ϕ + g. Defining ϕ̃, g̃ analogously, we have

0 ≤ ϕ ≤ ϕ̃ and 0 ≤ g ≤ g̃. So that

p1e
−ϵpω = ϕe−ϵϕ̃ + ϕe−ϵϕ̃(e−ϵg̃ − 1) + ge−ϵg̃e−ϵϕ̃.

The last two summand satisfy the hypotheses of Lemma 2.3 while the first summand is in S(Rn) with

uniform in ϵ bounds on the derivatives. Therefore,

|H1(ϵ, x)| ≲ ⟨x⟩−n−2α

uniformly in ϵ > 0. A similar argument for p2 yields the same bounds for H2(ϵ, x). Therefore, we

conclude that

sup
ϵ≥0

|Hω(ϵ, x)| ≲ min(|x|−n−1, |x|−n+2α−2),

which yields the claim.

Similarly, note that∣∣∇N
ξ [p3(ξ)(e

−ϵpω(ξ) − 1)]
∣∣ ≲ ϵ

⟨ξ⟩4α−4+N
, N = 0, 1, 2, . . . .

This implies the a.e. and L1 convergence of the contribution of H3 in hk,ϵ to hk.

For H1 we write

p1(ξ)(e
−ϵpω(ξ) − 1) = ϕ(ξ)e−ϵϕ̃(ξ)

(
e−ϵg̃(ξ) − 1

)
+ ϕ(ξ)

(
e−ϵϕ̃(ξ) − 1

)
+ g(ξ)

(
e−ϵp̃1(x) − 1

)
.
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The first and third summands satisfy the hypotheses of Lemma 2.3 with an additional factor of ϵ.

The second summand is in S(Rn) with all derivatives bounded by ϵ. A similar argument applies for

the contribution of H2, hence hk,ϵ converges a.e. and in L1 to hk.

For the jth derivative of hk,ϵ, by chain rule and scaling as above, it suffices to prove that the L1

norms of supϵ ϵ
j1∂j1ϵ (x · ∇x)

j2F−1[pωe
−ϵpω ](x) are ≲ 1 for j1, j2 ≥ 0 with j1 + j2 ≤ 2. Noting that

|ϵj1∂j1ϵ e−ϵpω | = |(−ϵpω)j1e−ϵpω | ≲ e−ϵpω/2, the arguments above remain valid. Convergence of the s

derivatives of hk,ϵ follow similarly. □

Using Lemma 2.2 and dominated convergence theorem, we conclude that for f ∈ S and for all

x ∈ Rn,

lim
ϵ→0+

Tα
k,ϵf(x) =

i

2|k|2α−1

∫ ∞

0

e−it|k|/2
∫
Rn

hk(y)f(x− y + tω) dy dt := Tα
k f(x).

Following the notation of [55], for ϵ > 0, let

Gϵf =

∫
Rn

Tα
k,ϵf(k, ·)dk, G0f =

∫
Rn

Tα
k f(k, ·)dk,

Note that

(12) Gϵf(x) =

∫
Rn

i

2|k|2α−1

∫ ∞

0

∫
Rn

e−i|k|t/2hk, ϵt

2|k|2α−1
(y)f(k, x− y + tω) dy dt dk.

Passing to polar coordinates, k = sω, and changing the order of integration, we have

Gϵf(x) =
i

2

∫
Sn−1

∫ ∞

0

Fϵ(t, ω, x) dt dω,

where

Fϵ(t, ω, x) =

∫ ∞

0

e−ist/2sn−2αhsω, ϵt

2s2α−1
∗ f(sω, ·)(x+ tω) ds.

Also note that G0f satisfies the same formula with F0 replacing Fϵ.

Lemma 2.5. Let ϵ > 0, 1 ≤ p ≤ ∞, and f(k, x) ∈ S(Rn
k ,S(Rn

x)). For all n > 2α+ 1, we have

∥Gϵf∥Lp ≤ Cn,m

∫
Rn

⟨k⟩2
2∑

j=0

∥Dj
kf(k, ·)∥Lp

dk

|k|1+2α
.

For 2α < n ≤ 2α+ 1, we have

∥Gϵf∥Lp ≤ Cn,m

∫
Rn

⟨k⟩n
2 −α+1

3∑
j=0

∥Dj
kf(k, ·)∥Lp

dk

|k|n2 +α
.

Moreover, Gϵf → G0f in Lp as ϵ→ 0+.

Proof. Note that∥∥Fϵ(t, ω, x)
∥∥
Lp

x
≲

∫ ∞

0

sn−2α∥ sup
ϵ
hsω,ϵ∥L1∥f(sω, ·)∥Lp ds ≲

∫ ∞

0

sn−2α∥f(sω, ·)∥Lp ds,
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which suffices for the integral in 0 < t ≲ 1. For t≫ 1 and n > 2α+ 1, we integrate by parts twice in

the s integral to obtain

|Fϵ(t, ω, x)| ≲
1

t2

∫
Rn

∫ ∞

0

∣∣∂2s(sn−2αhsω, ϵt

2s2α−1
(y)f(sω, x− y + tω)

)∣∣ ds dy.
Let Hsω(y) = | supϵ>0,j=0,1,2 s

j∂jshsω, ϵt

2s2α−1
(y)|. Using this we obtain the bound

|Fϵ(t, ω, x)| ≲
1

t2

∫
Rn

∫ ∞

0

⟨s⟩2sn−2α−2Hsω(y)

2∑
j=0

∣∣∂jsf(sω, x− y + tω)
∣∣ ds dy

≲
1

t2

∫
Rn

∫ ∞

0

Hsω(y)⟨s⟩2sn−2α−2
2∑

j=0

∣∣∂jsf(sω, x− y + tω)
∣∣ ds dy.

By Lemma 2.2, ∥Hsω∥L1 ≲ 1, therefore uniformly in t and ω, we have

∥∥Fϵ(t, ω, x)
∥∥
Lp

x
≲

1

⟨t⟩2

∫ ∞

0

⟨s⟩2sn−2α−2
2∑

j=0

∥∥∂jsf(sω, ·)∥∥Lp ds,

which implies the claim for Gϵf when n > 2α+ 1. The convergence of Gϵf to G0f in Lp also follows

by applying the same argument with hsω, ϵt

2s2α−1
− hsω replacing hsω, ϵt

2s2α−1
and using dominated

convergence theorem.

We now consider the case 2α < n ≤ 2α+ 1 and t≫ 1. After an integration by parts, we have

Fϵ(t, ω, x) = −2i

t

∫ ∞

0

e−ist/2∂s[s
n−2αhsω, ϵt

2s2α−1
∗ f(sω, ·)(x+ tω)] ds.

We cannot integrate by parts again to gain another power of t. Therefore we utilize the identity (with

K(s) = ∂s[s
n−2αhsω, ϵt

2s2α−1
∗ f(sω, ·)(x+ tω)])

∫ ∞

0

e−ist/2K(s)ds =
1

2

∫ 2π/t

0

e−ist/2K(s)ds+
1

2

∫ ∞

0

e−i(s+2π/t)t/2[K(s+ 2π/t)−K(s)]ds.

This implies that (with η = n
2 − α ∈ (0, 12 ])∥∥∥∫ ∞

0

e−ist/2K(s)ds
∥∥∥
Lp

x

≲∫ 2π/t

0

∥K(s)∥Lp
x
ds+

∫ ∞

0

(∥K(s+ 2π/t)∥Lp
x
+ ∥K(s)∥Lp

x
)1−η

(∫ s+2π/t

s

∥∥∂ρK(ρ)
∥∥
Lp

x
dρ

)η

ds

≲ t−1 sup
0<s<1

∥K(s)∥Lp
x
+ t−η

∫ ∞

0

[
sup

s<ρ<s+1
∥K(ρ)∥Lp

]1−η[
sup

s<ρ<s+1
∥∂ρK(ρ)∥Lp

]η
ds.

Note that

∥K(ρ)∥Lp
x
≲ ⟨ρ⟩ρn−2α−1

(
∥f(ρω, ·)∥Lp + ∥∂ρf(ρω, ·)∥Lp

)
∥∥∂ρK(ρ)

∥∥
Lp

x
≲ ⟨ρ⟩2ρn−2α−2

(
∥f(ρω, ·)∥Lp + ∥∂ρf(ρω, ·)∥Lp + ∥∂2ρf(ρω, ·)∥Lp

)
.
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Therefore, for t≫ 1∥∥∥∫ ∞

0

e−ist/2K(s)ds
∥∥∥
Lp

x

≲ t−η

∫ ∞

0

⟨s⟩sn−2α−1(s−1⟨s⟩)η sup
s<ρ<s+1

2∑
j=0

∥∂jρf(ρω, ·)∥Lpds.

Noting that, for s < ρ < s+ 1

2∑
j=0

∥∂jρf(ρω, ·)∥Lp ≤
2∑

j=0

∥∂jsf(sω, ·)∥Lp +

∫ s+1

s

3∑
j=0

∥∂jρf(ρω, ·)∥Lp dρ,

and applying Fubini’s theorem yield the claim bounding Gϵ in L
p. Convergence in Lp follows similarly.

□

We now return to the operator ZJ defined in (7). Taking limits as ϵj → 0 using the lemmas above

and tracing the steps in pages 13 and 14 of [16], we bound Zj defined in (7) as

∥ZJf∥Lp ≲ ∥F∥L1((Sn−1×Rn×R)J )∥f∥Lp ,

where

F = F (ω1, y1, t1, . . . , ωJ , yJ , tJ)

:=

∫
(0,∞)J

J∏
j=1

[
sn−2α
j e−i

sjtj
2 hsjωj

(yj)
]
KJ(s1ω1, . . . , sJωJ) dsJ · · · ds1,

where KJ(k1, k2, . . . , kJ) =
∏J

j=1 V̂ (kj − kj−1).

The following lemma finishes the proof of Lp boundedness of ZJ .

Lemma 2.6. For 2α < n < 4α− 1, we have

∥F∥L1((Sn−1×Rn×R)J ) ≤ CJ∥⟨·⟩
4α+1−n

2 +V (·)∥JL2 ,

for n = 4α− 1 ∈ N, we have

∥F∥L1((Sn−1×Rn×R)J ) ≤ CJ∥⟨x⟩1+V ∥JH0+ ,

for n > 4α− 1 and σ > n−2α
n−1 , we have

∥F∥L1((Sn−1×Rn×R)J ) ≤ CJ∥F(⟨x⟩2σV )∥J
L

n−1
n−2α

− .

Here C depends on n, α and the actual values of ± signs.

Proof. We write F as a sum of 2J operators of the form (for each subset J of {1, 2, ..., J})

FJ (ω1, y1, t1, . . . , ωJ , yJ , tJ) = F (ω1, y1, t1, . . . , ωJ , yJ , tJ)
[ ∏
j∈J

χ(yj)
][ ∏

j ̸∈J

χ̃(yj)
]
.

It suffices to prove that each FJ satisfies the claim.
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Fix r ≥ 2 and 1
q + 1

r = 1. By Hausdorff-Young inequality, we have (with Lp(Ω)Lq(D) =

LP (Ω, Lq(D)))

∥FJ ∥L1(Sn−1×Rn)JLr(RJ ) ≲
∫
(Sn−1×Rn)J

[ ∫
(0,∞)J

[ J∏
j=1

sn−2α
j hsjωj

(yj)
]q×

|KJ(s1ω1, . . . , sJωJ)|qds1 . . . dsJ
]1/q[ ∏

j∈J
χ(yj)

][ ∏
j ̸∈J

χ̃(yj)
]
dy⃗dω⃗.

Note that, by (11) in the proof of Lemma 2.2 above (for 0 < δ ≪ 1)

|hsω(y)| ≲ sn min((s|y|)−n−δ, (s|y|)−n+δ) ≲ χ(y)|y|−n+δsδ + χ̃(y)|y|−n−δs−δ.

Since χ(y)|y|−n+δ ∈ L1 and χ̃(y)|y|−n−δ ∈ L1 for any δ > 0, we can bound the norm above by∫
(Sn−1)J

[ ∫
(0,∞)J

[ J∏
j∈J

s
(n−2α+δ)q
j

][ J∏
j ̸∈J

s
(n−2α−δ)q
j

]
|KJ(s1ω1, . . . , sJωJ)|qds⃗

]1/q
dω⃗.

By Holder in ωj integrals we conclude that

(13) ∥FJ ∥L1(Sn−1×Rn)JLr(RJ ) ≲
[ ∫

RnJ

[ J∏
j∈J

|kj |(n−2α+δ)q−n+1
][ J∏

j ̸∈J

|kj |(n−2α−δ)q−n+1
]
×

|KJ(k1, . . . , kJ)|qdk1 . . . dkJ
]1/q

.

Similarly, (here αj = 0 or 1 independently)

∥tα1
1 . . . tαJ

J FJ ∥L1(Sn−1×Rn)JLr(RJ ) ≲∫
(Sn−1×Rn)J

[ ∫
(0,∞)J

∣∣∣∂α1
s1 . . . ∂

αJ
sJ

J∏
j=1

(
sn−2α
j hsjωj

(yj)
)
×KJ(s1ω1, . . . , sJωJ)

∣∣∣qds1 . . . dsJ]1/q
×

[ ∏
j∈J

χ(yj)
][ ∏

j ̸∈J

χ̃(yj)
]
dy⃗dω⃗.

Since ∂shsω satisfies the same bounds as 1
shsω, proceeding as above, we obtain the estimate

∥tα1
1 . . . tαJ

J FJ ∥L1(Sn−1×Rn)JLr(RJ ) ≲
[ ∫

RnJ

[ ∏
j∈J

|kj |(n−2α+δ)q−n+1
][ ∏

j ̸∈J

|kj |(n−2α−δ)q−n+1
]
×

∣∣∣ J∏
j=1

(∇αj

kj
+ |kj |−αj )KJ(k1, . . . , kJ)

∣∣∣qdk1 . . . dkJ]1/q.
Using Hardy’s inequality, this implies that

(14) ∥tα1
1 . . . tαJ

J FJ ∥L1(Sn−1×Rn)JLr(RJ ) ≲
[ ∫

RnJ

[ ∏
j∈J

|kj |(n−2α+δ)q−n+1
][ ∏

j ̸∈J

|kj |(n−2α−δ)q−n+1
]
×

∣∣∣ J∏
j=1

∇αj

kj
KJ(k1, . . . , kJ)

∣∣∣qdk1 . . . dkJ]1/q.
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Let 2α < n < 4α− 1. Applying (13) with 0 < δ < 4α−1−n
2 and q = r = 2, we obtain

∥FJ ∥2L1(Sn−1×Rn)JL2(RJ ) ≲
∫
RnJ

[ ∏
j∈J

|kj |n−4α+1+2δ
][ ∏

j ̸∈J

|kj |n−4α+1−2δ
]
|KJ(k1, . . . , kJ)|2dk⃗.

Note that by Hardy’s inequality the integral in kJ is bounded by∫
||DkJ

|
4α−1−n

2 ±δV̂ (kJ−1 − kJ)|2dkJ ≲ ∥⟨·⟩
4α−1−n

2 ±δV (·)∥2L2 ≲ ∥⟨·⟩
4α−1−n

2 +δV (·)∥2L2 .

Repeated application of this inequality yields

∥FJ ∥L1(Sn−1×Rn)JL2(RJ ) ≲ ∥⟨·⟩
4α−1−n

2 +δV (·)∥JL2 .

Similarly, applying (14) with r = q = 2 and 0 < δ ≪ 1 yield

∥tα1
1 . . . tαJ

J FJ ∥L1(Sn−1×Rn)JL2(RJ ) ≲ ∥⟨·⟩2+
4α−1−n

2 +δV (·)∥JL2 .

We lose two powers here as derivatives in kj−1 and kj may both hit V̂ (kj−1 − kj). Writing

J∏
j=1

(1 + |tj |) =
∑

α1,...,αJ∈{0,1}

|tα1
1 . . . tαJ

J |,

these inequalities imply with that

∥∥ J∏
j=1

⟨tj⟩FJ
∥∥
L1(Sn−1×Rn)JL2(RJ )

≲ ∥⟨·⟩2+
4α−1−n

2 +δV (·)∥JL2 ,

which by multilinear complex interpolation leads to

∥∥ J∏
j=1

⟨tj⟩
1
2+FJ

∥∥
L1(Sn−1×Rn)JL2(RJ )

≲ ∥⟨·⟩1+
4α−1−n

2 +δ+V (·)∥JL2 .

This proves the claim for n < 4α− 1 by Cauchy-Schwarz in t integrals.

For n = 4α− 1 ∈ N, with q = 2−, r = 2+, (13) implies

∥FJ ∥2−
L1(Sn−1×Rn)JL2+(RJ )

≲
∫
RnJ

[ J∏
j ̸∈J

|kj |0−
]
|KJ(k1, . . . , kJ)|2−dk1 . . . dkJ .

By Hardy’s inequality, the integral in kJ is

≲
∫ ∣∣|DkJ

|0+F(V (·)eikJ−1·)(kJ)
∣∣2−dkJ ≲

∫ ∣∣F(⟨·⟩0+V (·)eikJ−1·)(kJ)
∣∣2−dkJ

≲
∫ ∣∣F(⟨·⟩0+V (·))(kJ)

∣∣2−dkJ ≲
[ ∫

⟨kJ⟩0+
∣∣F(⟨·⟩0+V (·))(kJ)

∣∣2dkJ] 2−
2

≲ ∥⟨·⟩0+V (·)∥2−H0+ .

Repeating the same argument in the remaining variables yield

∥FJ ∥L1(Sn−1×Rn)JL2+(RJ ) ≲ ∥⟨·⟩0+V (·)∥JH0+ .

Similar modifications in the other inequalities imply the claim in this case.
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When n > 4α− 1, we apply the inequalities with 0 < δ ≪ 1 and q = n−1−δ
n−2α , r = n−1−δ

2α−1−δ to obtain

∥FJ ∥L1(Sn−1×Rn)JLr(RJ ) ≲
[ ∫

RnJ

∏
j ̸∈J

|kj |0−|KJ(k1, . . . , kJ)|qdk1 . . . dkJ
]1/q

≲ ∥F(⟨·⟩0+V (·))∥JLq .

Similarly, we obtain

∥tα1
1 . . . tαJ

J FJ ∥L1(Sn−1×Rn)JLr(RJ ) ≲ ∥F(⟨·⟩2+V (·))∥JLq ,

which implies that

∥∥ J∏
j=1

⟨tj⟩FJ
∥∥
L1(Sn−1×Rn)JL

n−1−δ
2α−1−δ (RJ )

≲ ∥F(⟨x⟩2+V )∥J
L

n−1−δ
n−2α

.

Interpolating the two bounds we obtain (with σ > n−2α
n−1−δ )

∥∥ J∏
j=1

⟨tj⟩σFJ
∥∥
L1(Sn−1×Rn)JL

n−1−δ
2α−1−δ (RJ )

≲ ∥F(⟨x⟩2σV )∥J
L

n−1−δ
n−2α

,

which implies the claim by Hölder’s inequality in t integrals.

□

The statement in Theorem 2.1 follows by keeping track of the relationship between q, r, σ and δ in

the proof above.

3. Low Energies

In this section we prove the low energy result, that for sufficiently large ℓ the tail of the Born

series (5) extends to a bounded operator on Lp(Rn). It is convenient to use a change of variables to

respresent Wlow,ℓ as

α

πi

∫ ∞

0

χ(λ)λ2α−1(R+
0 (λ

2α)V )kR+
V (λ

2α)(VR+
0 (λ

2α))kV [R+
0 (λ

2α)−R−
0 (λ

2α)] dλ

We begin by using the symmetric resolvent identity on the perturbed resolvent R+
V (λ

2α). With

v = |V | 12 , U(x) = 1 if V (x) ≥ 0 and U(x) = −1 if V (x) < 0, we define M+(λ) = U + vR+
0 (λ

2α)v.

Recall that M+ is invertible on L2 in a sufficiently small neighborhood of λ = 0 provided that zero is

a regular point of the spectrum. Using the symmetric resolvent identity, one has

R+
V (λ

2α)V = R+
0 (λ

2α)vM+(λ)−1v.

We select the cut-off χ to be supported in this neighborhood. Therefore, we have

Wlow,ℓ =
α

πi

∫ ∞

0

χ(λ)λ2α−1R+
0 (λ

2α)vΓk(λ)v[R+
0 (λ

2α)−R−
0 (λ

2α)] dλ,

where Γ0(λ) :=M+(λ)−1 and for ℓ ≥ 1

(15) Γℓ(λ) := UvR+
0 (λ

2α)
(
VR+

0 (λ
2α)

)ℓ−1
vM+(λ)−1v

(
R+

0 (λ
2α)V

)ℓ−1R+
0 (λ

2α)vU.
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To state the main result of this section, we define an operator T : L2 → L2 with integral kernel T (x, y)

to be absolutely bounded if the operator with kernel |T (x, y)| is bounded on L2.

Proposition 3.1. Fix n > 2α > 2 and 0 < η. Let Γ be a λ dependent absolutely bounded operator.

Let

Γ̃(x, y) := sup
0<λ<λ0

[
|Γ(λ)(x, y)|+ sup

1≤k≤⌈n2 ⌉+1

∣∣λk−η∂kλΓ(λ)(x, y)
∣∣].

For 2α < n < 4α assume that Γ̃ is bounded on L2, and for n ≥ 4α assume that Γ̃ satisfies

(16) Γ̃(x, y) ≲ ⟨x⟩−n
2 −⟨y⟩−n

2 −.

Then the operator with kernel

(17) K(x, y) =

∫ ∞

0

χ(λ)λ2α−1
[
R+

0 (λ
2α)vΓ(λ)v[R+

0 (λ
2α)−R−

0 (λ
2α)]

]
(x, y)dλ

is bounded on Lp for 1 ≤ p ≤ ∞ provided that β > n.

Note that boundedness of the contribution of the tail follows from this proposition and the following

Lemma 3.2. Fix n > 2α ≥ 2. Assume that |V (x)| ≲ ⟨x⟩−β, where β > n + 4 when n is odd and

β > n + 3 when n is even. Also assume that zero is a regular point of the spectrum of H. Then,

for some η > 0, the operator Γℓ(λ) defined in (15) satisfies the hypothesis of Proposition 3.1 for all ℓ

when 2α < n < 4α and for all sufficiently large ℓ when n ≥ 4α.

We prove Proposition 3.1 below, and provide the argument for Lemma 3.2 in Section 4. To prove

these results we need the following representations of the free resolvent given in [15], which were

inspired by Lemmas 3.2 and 6.2 in [16].

Proposition 3.3. Fix α > 0 and n ∈ N with n > 2α. Then, we have the representations, with

r = |x− y|,

R+
0 (λ

2α)(x, y) =
eiλr

rn−2α
F (λr), and

(18) [R+
0 (λ

2α)−R−
0 (λ

2α)](x, y) = λn−2α
[
eiλrF+(λr) + e−iλrF−(λr)

]
,

where, for all 0 ≤ N ≤ n+1+4α
2 ,

(19) |∂Nλ F (λr)| ≲ λ−N ⟨λr⟩
n+1
2 −2α, |∂Nλ F±(λr)| ≲ λ−N ⟨λr⟩−

n−1
2 .

Further, for all 1 ≤ N ≤ n+1+4α
2 we have

(20) |∂Nλ F (λr)| ≲ λ−N (λr)min(1,n−2α,2α−)⟨λr⟩
n+1
2 −2α, |∂Nλ F±(λr)| ≲ λ−N (λr)⟨λr⟩−

n−1
2 ,

which improves the estimate above for λr ≲ 1.
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Proposition 3.4. Fix α > 1
2 and n > 2α. Assume that H has no embedded eigenvalues. Then when

λ ≳ 1, we have

∥⟨x⟩− 1
2−RV (λ

2α)⟨y⟩− 1
2−∥L2→L2 ≲ λ1−2α,

provided that |V (x)| ≲ ⟨x⟩−β for some β > 1. Further, for any j ∈ N we have

∥⟨x⟩−j− 1
2−∂jλRV (λ

2α)⟨y⟩−j− 1
2−∥L2→L2 ≲ λ1−2α,

provided that |V (x)| ≲ ⟨x⟩−β for some β > 1 + 2j.

We have the corollaries of Proposition 3.3 is

Corollary 3.5. Under the conditions of Proposition 3.3 we have

sup
0<λ<1

|R0(λ
2α)(x, y)| ≲ |x− y|2α−n + |x− y|−

n−1
2 .

Further, for sufficiently small η > 0, we have

sup
0<λ<1

|λmax(0,N−η)∂Nλ R0(λ
2α)(x, y)| ≲ |x− y|2α+η−n + |x− y|N−n−1

2 , 1 ≤ N ≤ n+ 1 + 4α

2
.

Corollary 3.6. Let E(λ)(r) := R+
0 (λ

2α)(r)−R+
0 (0)(r). Then, for λr ≪ 1 and all sufficiently small

η > 0, we have

|∂Nλ E(λ)(r)| ≲ λη−Nr2α−n+η, 0 ≤ N ≤ n+ 1 + 4α

2
.

When λr ≳ 1, we have

|E(λ)(r)| ≲ r
1−n
2 λ

n+1
2 −2α + r2α−n, and

|∂Nλ E(λ)(r)| ≲ r
1−n
2 +Nλ

n+1
2 −2α, 1 ≤ N ≤ n+ 1 + 4α

2
.

With these resolvent bounds, we now show that the low energy portion extends to a bounded

operator on the full range 1 ≤ p ≤ ∞. We say an operator K with integral kernel K(x, y) is

admissible if

sup
x∈Rn

∫
Rn

|K(x, y)| dy + sup
y∈Rn

∫
Rn

|K(x, y)| dx <∞.

By the Schur test, it follows that an operator with admissible kernel is bounded on Lp(Rn) for all

1 ≤ p ≤ ∞. We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Using the representations in Proposition 3.3 with r1 = |x − z1| and r2 :=

|z2 − y| we see that K(x, y) is the difference of

(21) K±(x, y) =

∫
R2n

v(z1)v(z2)

rn−2α
1

∫ ∞

0

eiλ(r1±r2)χ(λ)λn−1Γ(λ)(z1, z2)F (λr1)F±(λr2)dλdz1dz2.

We write

K(x, y) =:

4∑
j=1

Kj(x, y),
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where the integrand in K1 is restricted to the set r1, r2 ≲ 1, in K2 to the set r1 ≈ r2 ≫ 1, in K3 to

the set r2 ≫ ⟨r1⟩, in K4 to the set r1 ≫ ⟨r2⟩. We define Kj,± analogously.

Using the bounds of Proposition 3.3 for λr ≪ 1, we bound the contribution of |K1,±(x, y)| by∫
R2n

v(z1)v(z2)χr1,r2≲1

rn−2α
1

Γ̃(z1, z2)dz1dz2.

Therefore ∫
|K1,±(x, y)|dx ≲

∥∥| · |2α−n
∥∥
L1(B(0,1))

∥v∥2L2∥Γ̃∥L2→L2 ≲ 1,

uniformly in y. Similarly, provided that 2α < n < 4α,∫
|K1,±(x, y)|dy ≲ ∥Γ̃∥L2→L2∥v∥L2∥v(·)|x− ·|2α−n∥L2 ≲ 1

holds uniformly in x. When n ≥ 4α, we use the decay bound (16) on Γ̃ to obtain∫
|K1,±(x, y)|dy ≲

∫
⟨z1⟩−n−⟨z2⟩−n−r2α−n

1 dz1dz2 ≲ 1,

which implies that K1 is admissible.

For K2, we restrict ourself to K2,− since the + sign is easier to handle. We integrate by parts twice

in the λ integral when λ|r1 − r2| ≳ 1 (using Proposition 3.3 and the definition of Γ̃) and estimate

directly when λ|r1 − r2| ≪ 1 to obtain

|K2,−(x, y)| ≲
∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≈r2≫1

rn−2α
1

∫ ∞

0

χ(λ)λn−1χ(λ|r1 − r2|)⟨λr1⟩1−2αdλdz1dz2

+

∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≈r2≫1

rn−2α
1

∫ ∞

0

χ(λ)λn−3χ̃(λ|r1 − r2|)⟨λr1⟩1−2α

|r1 − r2|2
dλdz1dz2

≲
∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≈r2≫1

rn−2α
1

∫ ∞

0

χ(λ)λn−1⟨λr1⟩1−2α

⟨λ(r1 − r2)⟩2
dλdz1dz2.

Therefore, passing to the polar coordinates in x integral (centered at z1) and noting 1 − 2α < 0, we

have ∫
|K2,−(x, y)|dx ≲

∫
R2n

∫ 1

0

∫
r1≈r2≫1

v(z1)Γ̃(z1, z2)v(z2)
λn−2α

⟨λ(r1 − r2)⟩2
dr1dλdz1dz2

≲
∫
R2n

∫ 1

0

∫
R
v(z1)Γ̃(z1, z2)v(z2)

λn−2α−1

⟨η⟩2
dηdλdz1dz2 ≲ 1,

uniformly in y. In the second line we defined η = λ(r1−r2) in the r1 integral and used n−2α−1 > −1.

Since r1 ≈ r2, the integral in y can be bounded uniformly in x and hence the contribution of K2 is

admissible. We now consider the contribution of

(22) K4,±(x, y) =

∫
R2n

v(z1)v(z2)χr1≫⟨r2⟩

rn−2α
1 ∫ ∞

0

eiλ(r1±r2)F (λr1)χ(λ)Γ(λ)(z1, z2)λ
n−1F±(λr2) dλdz1dz2.
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When λr1 ≲ 1, using (19), we bound |F±(λr2)|, |F (λr1)| ≲ 1 and estimate the λ integral by

r−n
1 Γ̃(z1, z2), whose contribution to K4 is bounded by∫

R2n

v(z1)v(z2)Γ̃(z1, z2)χr1≫⟨r2⟩

r2n−2α
1

dz1dz2.

This is admissible since n > 2α.

When λr1 ≳ 1, we integrate by parts N = ⌈n/2⌉+ 1 times (using (19)) to obtain the bound

1

|r1 ± r2|N

∫ ∞

0

∣∣∣∂Nλ [
F (λr1)χ̃(λr1)χ(λ)λ

n−1Γ(λ)(z1, z2)F±(λr2)
]∣∣∣dλ

≲ r−N
1

∑
0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r1

λ
n+1
2 −2α−j1r

n+1
2 −2α

1 λn−1−j2
∣∣∂j3λ Γ(λ)(z1, z2)

∣∣ λ−j4

⟨λr2⟩
n−1
2

dλ

≲ r
n+1
2 −2α−N

1 Γ̃(z1, z2)
∑

0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r1

λ
3n−1

2 −2α−j1−j2−j3−j4dλ

≲ r
−2α− 1

2−{n
2 }

1 Γ̃(z1, z2)

∫ 1

1
r1

λn−2α− 3
2−{n

2 }dλ ≲ r−2α−ϵ
1 Γ̃(z1, z2)

∫ 1

1
r1

λn−2α−1−ϵdλ

≲ r−2α−ϵ
1 Γ̃(z1, z2),

provided that 0 < ϵ < n− 2α. The contribution of this to (22) is

≲
∫
R2n

v(z1)v(z2)χr1≫⟨r2⟩

rn+ϵ
1

dz1dz2,

which is admissible as ϵ > 0.

We now consider K3:

(23) K3(x, y) =

∫
R2n

χr2≫⟨r1⟩v(z1)v(z2)∫ ∞

0

λ2α−1χ(λ)R+
0 (λ

2α)(r1)Γ(λ)(z1, z2)[R+
0 (λ

2α)−R−
0 (λ

2α)](r2) dλdz1dz2.

We write

R+
0 (λ

2α) = R+
0 (0) + [R+

0 (λ
2α)−R+

0 (0)] =: G0 + E(λ),

Γ(λ) = Γ(0) + [Γ(λ)− Γ(0)] =: Γ(0) + Γ1(λ).

Here G0 = R+
0 (0) = cn,αr

2α−n
1 . We first consider the contribution of G0Γ(0) to K3:∫

R2n

χr2≫⟨r1⟩v(z1)v(z2)G0(r1)Γ(0)(z1, z2)

∫ ∞

0

λ2α−1χ(λ)[R+
0 (λ

2α)−R−
0 (λ

2α)](r2) dλdz1dz2.

Identifying the λ integral as a constant multiple of the kernel of χ((−∆)
1
2α ), we may bound it as

O(⟨r2⟩−N ) for all N since χ(|ξ| 1
α ) is Schwartz. Therefore, we have the bound∫

R2n

χr2≫⟨r1⟩v(z1)v(z2)r
2α−n
1 r−n−1

2 Γ̃(z1, z2)dz1dz2,

which is admissible by Lemma 4.1.



WAVE OPERATORS FOR FRACTIONAL ORDER SCHRÖDINGER OPERATORS 21

It remains to consider the contributions of R+
0 (λ

2α)Γ1(λ) and of E(λ)Γ(0). The former can be

written as∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩

rn−2α
1

∫ ∞

0

eiλ(r1±r2)F (λr1)χ(λ)λ
n−1Γ1(λ)(z1, z2)F±(λr2) dλdz1dz2.

When λr2 ≪ 1, using |Γ1(λ)| ≲ ληΓ̃, which follows from the mean value theorem, and Proposition 3.3

to directly integrate in λ, we obtain the bound∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩

rn−2α
1 rn+η

2

Γ̃(z1, z2)dz1dz2,

which is admissible by Lemma 4.1 as η > 0. When λr2 ≳ 1, integrating by parts N = ⌈n/2⌉+1 times,

we have the bound

(24)

∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩

rn−2α
1 |r1 ± r2|N

∫ ∞

0

∣∣∣∂Nλ [
F (λr1)χ(λ)χ̃(λr2)λ

n−1Γ1(λ)(z1, z2)F±(λr2)
]∣∣∣ dλdz1dz2.

We estimate the λ integral by (noting that λj3 |∂j3λ Γ1| ≲ ληΓ̃ and using Proposition 3.3)

≲ r
−n−1

2
2 Γ̃(z1, z2)

∑
0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r2

⟨λr1⟩
n+1
2 −2αλ−j1λn−1−j2λη−j3λ−

n−1
2 −j4dλ

≲ r
−n−1

2
2 Γ̃(z1, z2)

∫ 1

1
r2

⟨λr1⟩
n+1
2 −2αλ

n+1
2 −⌈n

2 ⌉+η−2dλ

≲ r
−n−1

2
2 Γ̃(z1, z2)

(∫ min( 1
r1

,1)

1
r2

λη−{n
2 }− 3

2 dλ+

∫ 1

min( 1
r1

,1)

r
n+1
2 −2α

1 λ
n
2 −2α+η−{n

2 }−1dλ
)
.

For 0 < η ≪ 1, the first integral is at most r
−η+{n

2 }+ 1
2

2 . Its contribution to (24) is at most∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩

rn−2α
1 rn+η

2

Γ̃(z1, z2)dz1dz2,

which is admissible by Lemma 4.1. Similarly, the second integral is bounded by rn−2α
1 r

1
2+{n

2 }
1 after

multiplying the integrand by (λr1)
n−1
2 (assuming that η ≤ n− 2α). Contribution of this to (24) is at

most ∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩⟨r1⟩
1
2+{n

2 }

r
n+ 1

2+{n
2 }

2

Γ̃(z1, z2)dz1dz2,

which, by Lemma 4.1, is also admissible.

We now consider the contribution of E(λ)Γ(0):

(25)

∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩Γ(0)(z1, z2)

∫ ∞

0

e±iλr2E(λ)(r1)χ(λ)λ
n−1F±(λr2) dλdz1dz2.

Using Proposition 3.3 and Corollary 3.6 when λr1 ≪ 1. Using this when λr2 ≪ 1 and using

|Γ(0)(z1, z2)| ≤ Γ̃(z1, z2), we bound (25) by direct estimate by∫
R2n

v(z1)v(z2)χr2≫⟨r1⟩Γ̃(z1, z2)

rn−2α−η
1 rn+η

2

dz1dz2,

which is admissible by Lemma 4.1 since η, n− 2α > 0.
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When λr2 ≳ 1 and λr1 ≪ 1, we integrate by parts N = ⌈n/2⌉+ 1 times to obtain∫
R2n

r−N
2 v(z1)v(z2)χr2≫⟨r1⟩Γ̃(z1, z2)

∫ ∞

0

∣∣∣∂Nλ [
E(λ)(r1)χ(λ)χ(λr1)χ̃(λr2)λ

n−1F±(λr2)
]∣∣∣ dλdz1dz2.

Using Corollary 3.6 and Proposition 3.3, we bound this by∫
R2n

r
−N+ 1−n

2
2 rη+2α−n

1 v(z1)v(z2)χr2≫⟨r1⟩Γ̃(z1, z2)

∫ 1

r−1
2

λη−{n
2 }− 3

2 dλdz1dz2

≲
∫
R2n

r−n−η
2 rη+2α−n

1 v(z1)v(z2)χr2≫⟨r1⟩Γ̃(z1, z2)dz1dz2,

which is again admissible by Lemma 4.1.

It remains to consider the case λr1 ≳ 1. Integrating by parts once we rewrite the λ integral in (25)

as

1

r2

∫ ∞

0

e±iλr2∂λ[E(λ)(r1)] χ̃(λr1)χ(λ)λ
n−1F±(λr2) dλ(26)

+
1

r2

∫ ∞

0

e±iλr2E(λ)(r1) ∂λ
[
χ̃(λr1)χ(λ)λ

n−1F±(λr2)
]
dλ.(27)

For the second integral, (27), we integrate by parts N = ⌈n
2 ⌉ more times using Proposition 3.3, to

obtain the bound

1

r
N+n

2 + 1
2

2

∑
j1+j2≤N, 0≤j1,j2

∫ 1

r−1
1

∣∣∂j1λ [E(λ)(r1)]
∣∣ λn−3

2 −j2 dλ.

Using Corollary 3.6 we bound this by

≲
1

r
N+n

2 + 1
2

2

[ ∫ 1

r−1
1

r2α−n
1 λ

n−3
2 −N dλ+

∑
j1+j2≤N, 0≤j1,j2

∫ 1

r−1
1

r
j1+

1−n
2

1 λn−2α−1−j2 dλ
]
.

The first integral takes care of the additional term that arises in Corollary 3.6 (for λr ≳ 1) in the case

j1 = 0. Letting {n/2} = n/2− ⌊n/2⌋, we bound this by

≲
r
{n/2}+ 1

2+2α−n
1 + r

{n/2}+ 1
2

1

r
n+{n/2}+ 1

2
2

≲
r
{n/2}+ 1

2
1

r
n+{n/2}+ 1

2
2

,

whose contribution is admissible by Lemma 4.2 since r2 ≫ ⟨r1⟩.

For the first integral, (26), we integrate by parts N = ⌈n
2 ⌉ more times after pulling out the phase

eiλr1 to obtain the bound

1

r
n
2 + 1

2
2 |r1 ± r2|N

∑
j1+j2≤N, 0≤j1,j2

∫ 1

r−1
1

∣∣∂j1λ [Ẽ(λ)(r1)]
∣∣ λn−1

2 −j2 dλ

Ẽ(λ)(r1) := e−iλr1∂λ[E(λ)(r1)]

Using the representation in Proposition 3.3, we bound this by

1

r
n+{n/2}+ 1

2
2

∑
j1+j2≤N, 0≤j1,j2

∫ 1

r−1
1

r1
(λr1)

n+1
2 −2α

rn−2α
1

λ
n−1
2 −j1−j2 dλ
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≲
1

r
n+{n/2}+ 1

2
2 r

n−3
2

1

∫ 1

r−1
1

λ
n
2 −2α−{n/2} dλ ≲

r
{n/2}+ 1

2
1

r
n+{n/2}+ 1

2
2

,

which is admissible by Lemma 4.2. □

4. Proof of Lemma 3.2

For small energies, it remains only to prove Lemma 3.2 stating that the operators Γℓ(λ) defined in

(15) satisfy the bounds needed to apply Proposition 3.1. This follows, with some modifications, from

the discussion preceeding Lemma 3.5 in [16], also see Section 4 of [17]. We briefly sketch the argument

here. One of the differences here is that n− 2α can be close to zero, in which case we cannot gain a

full power of λ in the bound (28) below.

We write n⋆ to denote n+ 4 if n is odd and n+ 3 if n is even. By Corollary 3.5, for a sufficiently

small η > 0, the operator Rj with kernel

(28) Rj(x, y) := v(x)v(y) sup
0<λ<1

|λmax(0,j−η)∂jλR
+
0 (λ

2α)(x, y)|

is bounded on L2(Rn) for 0 ≤ j ≤ ⌈n
2 ⌉ + 1 provided that |V (x)| ≲ ⟨x⟩−β for some β > n⋆. This

follows the argument from Section 4 of [17].

Similarly by Corollary 3.6, E(λ) := v[R+
0 (λ

2α)−R+
0 (0)]v satisfies

∥E(λ)∥L2→L2 ≲ λη.

Now, we define the operator

T0 := U + vR+
0 (0)v =M+(0).

By the assumption that zero energy is regular, T0 is invertible with absolutely bounded inverse, see

[15]. Note that by a Neumann series expansion and the invertibility of T0 we have

[M+(λ)]−1 =

∞∑
k=0

(−1)kT−1
0 (E(λ)T−1

0 )k.

The series converges in the operator norm on L2 for sufficiently small λ. By the resolvent identity the

operator ∂Nλ [M+(λ)]−1 is a linear combination of operators of the form

[M+(λ)]−1
J∏

j=1

[
v
(
∂
Nj

λ R+
0 (λ

2α)
)
v[M+(λ)]−1

]
,

where
∑
Nj = N and each Nj ≥ 1. From the discussion above on Rj ’s this representation implies

that

(29) sup
0<λ<λ0

λmax(0,N−η)|∂Nλ [M+(λ)]−1(x, y)|

is bounded in L2 for N = 0, 1, . . . , ⌈n
2 ⌉+ 1 provided that β > n⋆.
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Recalling the definition of Γℓ(λ), (15), and noting the L2 boundedness of Rj ’s above we see that

sup
0<λ<λ0

λmax(0,N−η)
∣∣∂Nλ (

UvR+
0 (λ

2α)
(
VR+

0 (λ
2α)

)ℓ−1
v
)
(x, y)

∣∣
is bounded on L2. This yields Lemma 3.2 when 2α < n < 4α.

For n ≥ 4α, Lemma 3.2 follows by writing

Γk(λ) = UvA(λ)vM−1(λ)vA(λ)vU,

where

A(λ, z1, z2) =
[(
R+

0 (λ
2α)V

)ℓ−1R+
0 (λ

2α)
]
(z1, z2).(30)

If ℓ− 1 is sufficiently large depending on n, α and |V (x)| ≲ ⟨x⟩−
n⋆
2 −, then

sup
0<λ<1

|λmax{0,k−η}∂kλA(λ, z1, z2)| ≲ ⟨z1⟩
3
2+{n

2 }⟨z2⟩
3
2+{n

2 },

for 0 ≤ ℓ ≤ ⌈n
2 ⌉ + 1. This follows from the pointwise bounds on Rj above. The iteration of the

resolvents smooths out the local singularity |x− ·|2α−n. Each iteration improves the local singularity

by 2α, so that after j iterations the local singularity is of size |x−·|2αj−n. Selecting ℓ−1 large enough

ensures that the local singularity is completely integrated away. This yields Lemma 3.2, see [16, 15]

for more details.

We recall Lemmas 4.1 and 4.2 from [17], which we used in the proof of Proposition 3.1, which we

state here for the convenience of the reader.

Lemma 4.1. Let K be an operator with integral kernel K(x, y) that satisfies the bound

|K(x, y)| ≲
∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|≫⟨z1−x⟩}

|x− z1|n−2α−k|z2 − y|n+ℓ
dz1 dz2

for some 0 ≤ k ≤ n − 2α and ℓ > 0. Then, under the hypotheses of Lemma 3.1, the kernel of K is

admissible, and consequently K is a bounded operator on Lp(Rn) for all 1 ≤ p ≤ ∞.

Lemma 4.2. Let K be an operator with integral kernel K(x, y) that satisfies the bound

|K(x, y)| ≲
∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|≫⟨z1−x⟩}|x− z1|ℓ

|z2 − y|n+ℓ
dz1 dz2

for some ℓ > 0. Then, under the hypotheses of Lemma 3.1, the kernel of K is admissible, and

consequently K is a bounded operator on Lp(Rn) for all 1 ≤ p ≤ ∞.
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5. High Energy

Since we can control the contribution of the Born series to arbitrary length, and the low energy

portion of the tail of the series in (5), we need only consider the tail when λ ≳ 1 and show that∫ ∞

0

χ̃(λ)λ2α−1[(R+
0 V )ℓVR+

V (VR+
0 )

ℓVR±
0 ](λ

2α) dλ

extends to bounded operators on Lp(Rn) provided ℓ is sufficiently large. In all cases we assume there

are no positive eigenvalues of H. The argument follows is identical to that [16] for the integer order

Schrödinger case using the bounds on the resolvents in Proposition 3.3 and the limiting absorption

principle in Proposition 3.4, which are tailored to the fractional Schrödinger operators. This allows

us to pointwise dominate the integral kernel of the tail of the Born series with an admissible kernel:

Proposition 5.1. We have the bound

(31)

∣∣∣∣ ∫ ∞

0

χ̃(λ)λ2α−1(R+
0 (λ

2α)V )ℓ+1R+
V (λ

2α)V (R+
0 (λ

2α)V )ℓR±
0 (λ

2α)(x, y) dλ

∣∣∣∣
≲

1

⟨|x| − |y|⟩n+3
2 ⟨x⟩n−1

2 ⟨y⟩n−1
2

,

provided ℓ is sufficiently large, and |V (x)| ≲ ⟨x⟩−β for some β > n⋆.

The proof is a straightforward modification of the proof of Propositions 5.3 and 6.5 in [16]. To

complete the claim, we use Lemma 5.2 from [16] (also see Lemma 3.1 in [59] and Lemma 2.1 in [27]):

Lemma 5.2. Suppose that K is an integral operator whose kernel obeys the pointwise bounds

|K(x, y)| ≲ 1

⟨x⟩n−1
2 ⟨y⟩n−1

2 ⟨|x| − |y|⟩n+1
2 +ϵ

.(32)

Then K is admissible provided that ϵ > 0.

The proposition and lemma imply that the kernel is admissible and hence the tail extends to a

bounded operator on Lp(Rn) for all 1 ≤ p ≤ ∞.
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