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Abstract. We prove dispersive bounds for fractional Schrödinger operators on Rn of the form

H = (−∆)α+V with V a real-valued, decaying potential and α /∈ N. We derive pointwise bounds on

the resolvent operators for all 0 < α < n
2
, a quantitative limiting absorption principle for 1

2
< α < n

2
,

and establish global dispersive estimates in dimension n ≥ 2 for the range n+1
4

≤ α < n
2
.

1. Introduction

In this paper we consider linear dispersive estimates for the Schrödinger evolution eitH with a

Hamiltonian of fractional Laplacian type, H = (−∆)α + V . The potential V (x) is a bounded real-

valued function on Rn, n ≥ 2, which decays at a polynomial rate for large |x|. We assume that the

potential does not introduce any embedded eigenvalues of positive energy, and that zero is a regular

point of the spectrum for both H and (−∆)α (i.e. 2α < n). Under these assumptions we show that the

perturbed evolution eitH satisfies the same L1 → L∞ bounds as that of the free fractional Laplacian

eit(−∆)α once any bound states are projected away. Fractional Schrödinger equations have garnered

interest in the physics literature, see for example [30, 31], where Laskin proposes a theory of fractional

Quantum Mechanics.

The free propagator kernel is the Fourier transform in Rn of the complex exponential function

eit|ξ|
2α

. By a scaling argument, it should have size |t|−n/(2α) provided the Fourier transform of ei|ξ|
2α

is bounded. A stationary phase estimate shows that this occurs whenever α ≥ 1. Thus when α ≥ 1

we seek a bound of the form

∥eitHPac(H)∥L1→L∞ ≲ |t|− n
2α .

Here Pac is projection onto the absolutely continuous spectrum of H.

For 1
2 < α < 1, the convolution kernel of ei(−∆)α grows along with |x − y| and oscillates, so

smoothing of some order is needed in order to obtain a uniform bound. More specifically, the Fourier

transform of ei|ξ|
2α |ξ|γ−n is bounded when 1

2 < α < 1 and 0 < γ ≤ nα. The minimum amount of

homogeneous smoothing required is of order n(1−α), and in that case the scaling considerations yield
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2 ERDOĞAN, GOLDBERG, GREEN

that eit(−∆)α(−∆)n(α−1)/2 satisfies an L1 → L∞ bound with size |t|−n
2 . In the cases where 1

2 < α < 1

we seek a bound of the form

∥eitHH n
2 (1− 1

α )Pac(H)∥L1→L∞ ≲ |t|−n
2 .

Smoothing to higher order (i.e. choosing γ < nα) results in a slower rate of time decay of the linear

propagator.

The range of α and n in our argument is governed by two considerations. The assumption above

that zero is a regular point of the spectrum of (−∆)α is true when 0 < 2α < n and false otherwise.

We also rely on a uniform bound for the kernel of the free resolvents (−∆)α − (λ + i0))−1 for large

λ. This bound will only be true when α ≥ n+1
4 . Consequently our results are stated for fractional

Laplacian operators in the range n+1
4 ≤ α < n

2 . The range is empty in one dimension, consists of the

interval [ 34 , 1) in two dimensions, and is contained in the half-line α ≥ 1 in all dimensions n ≥ 3.

Our main result(s) are

Theorem 1.1. In dimension n = 2, fix 3
4 ≤ α < 1. Assume that |V (x)| ≲ ⟨x⟩−β for some β > 4 and

that H has no embedded eigenvalues and zero is a regular point of the spectrum. Then

∥eitHH1− 1
αPac(H)∥L1→L∞ ≲ |t|−1.

The two-dimensional result requires a certain amount of smoothing as discussed above. In dimen-

sions n ≥ 3, we prove global bounds of the form

Theorem 1.2. In dimensions n ≥ 3, fix n+1
4 ≤ α < n

2 . Assume that |V (x)| ≲ ⟨x⟩−β for some

β > n+ 4 and that H has no embedded eigenvalues and zero is a regular point of the spectrum. Then

∥eitHPac(H)∥L1→L∞ ≲ |t|− n
2α .

These results have been established before in the cases where α is an integer. The case α = 1, n = 3

is particularly well known, with Theorem 1.2 being true for β > 2, [21] and scaling-critical conditions

that approximate β = 2, [5]. Theorem 1.2 is true in cases with integer α ≥ 2 and scaling-critical

conditions that include all β > 2α, [13].

We note that when α /∈ N that (−∆)α is a non-local operator unlike the integer order operators.

However, it is still possible to a certain extent to use the integer-α cases as a guide to what occurs

in general. Indeed, one might claim that Theorems 1.1 and 1.2 hold because such a heuristic is

valid for a sufficient number of the leading order terms. It is important to emphasize here that the

resolvent of the fractional Laplacian displays some behavior that is completely absent when α is an

integer, causing the heuristics to break down after a certain number of terms which is fortunately

large enough to permit the dispersive estimates to pass through unscathed. At high energy the culprit
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is the singularity at zero of the function |ξ|2α. At low energy the asymptotic expansion of the free

resolvent becomes a concatenation of two distinct power series, one in integer powers of λ and one

in powers of λ1/α, with logarithmic corrections if the two happen to coincide. These expressions are

more intricate than what occurs for α ∈ N, and additional care is required.

To the best of our knowledge, there are no known results on global dispersive bounds for perturbed

fractional Schrödinger operators. Cho, Ozawa, and Xia studied dispersive and Strichartz estimates

for the free operator assuming initial data in distorted Besov spaces, [11]. Further study of Strichartz

estimates for related operators may be found in [10, 27], for example. We consider related problems

with the Lp boundedness of the wave operators in a companion paper, [14].

The lower bound on α arises due to growth of the resolvent in the spectral parameter of order

λ
n+1
2 −2α that we derive in Proposition 2.2 below. These uniform bounds may be of independent

interest. As in the integer order case, [25, 12], we believe that some smoothness of the potential is

required in general for dispersive bounds to hold if n > 4α− 1. The upper bound on α arises to avoid

the existence of zero energy resonances for the free operator (−∆)α. For a more thorough discussion

of the history of dispersive estimates in the integer order case we refer to [13].

We note that one can apply standard arguments to deduce families of Strichartz estimates from

the dispersive bounds in Theorems 1.1 and 1.2.

The paper is organized as follows. In Section 2 we develop detailed expansions of the resolvent

operators and prove a quantitative limiting absorption principle for the fractional Schrödinger oper-

ators. Then in Section 3 we prove Theorem 1.1, and in Section 4 we prove Theorem 1.2. Finally, in

Section 5 we provide a characterization of the regularity of the threshold.

2. Resolvent estimates

For short-range potentials, such as those satisfying |V (x)| ≲ ⟨x⟩−1−, we refer the reader to [36] for a

limiting absorption principle with uniform bounds on compact subsets of (0,∞) under the assumption

that there are no embedded eigenvalues. In particular, we have boundedness of the resolvents from

L2, 12+ to L2,− 1
2−.

However we need more detailed information on the perturbed and free resolvents to study the

dispersive estimates for the evolution. In this section we establish pointwise bounds on the limiting

free resolvent operators,

R±
0 (λ) = lim

ϵ→0+
[(−∆)α − (λ± iϵ)]−1,

and their derivatives. These in turn we may use to understand the perturbed resolvent operators

R±
V (λ) = lim

ϵ→0+
[(−∆)α + V − (λ± iϵ)]−1.

Specifically, we show
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Proposition 2.1. Fix α > 0 and n ∈ N with n > 2α. Then, we have the representations, with

r = |x− y|,

R+
0 (λ

2α)(x, y) =
eiλr

rn−2α
F (λr), and

(1) [R+
0 (λ

2α)−R−
0 (λ

2α)](x, y) = λn−2α
[
eiλrF+(λr) + e−iλrF−(λr)

]
,

where, for all 0 ≤ N ≤ n+1+4α
2 ,

(2) |∂Nλ F (λr)| ≲ λ−N ⟨λr⟩
n+1
2 −2α, |∂Nλ F±(λr)| ≲ λ−N ⟨λr⟩−

n−1
2 .

Further, for all 1 ≤ N ≤ n+1+4α
2 we have

(3) |∂Nλ F (λr)| ≲ λ−N (λr)min(1,n−2α,2α−)⟨λr⟩
n+1
2 −2α, |∂Nλ F±(λr)| ≲ λ−N (λr)⟨λr⟩−

n−1
2 ,

which improves the estimate above for λr ≲ 1.

For the low energy argument, we define log−(y) = − log(y)χ{0<y<1}, and use the following expan-

sions.

Proposition 2.2. Fix α > 0 and n ∈ N with n > 2α. For 0 < λ < 1,

R+
0 (λ

2α)(x, y) =
Cα

|x− y|n−2α
+ E(λ, r)

where E(λ, r) = O(λn−2α) when 4α > n, E(λ, r) = O(λn−2α(1 + log−(λr))) when n = 4α and

E(λ, r) = O(λn−2α + λ2αr4α−n) when n > 4α.

Finally, we establish a limiting absorption principle for large energies.

Proposition 2.3. Fix α > 1
2 and n > 2α. Assume that H has no embedded eigenvalues. Then when

λ ≳ 1, we have

∥⟨x⟩− 1
2−R±

V (λ
2α)⟨y⟩− 1

2−∥L2→L2 ≲ λ1−2α,

provided that |V (x)| ≲ ⟨x⟩−β for some β > 1. Further, for any j ∈ N, if β > 1 + 2j, we have

∥⟨x⟩−j− 1
2−∂jλR

±
V (λ

2α)⟨y⟩−j− 1
2−∥L2→L2 ≲ λ1−2α.

To prove these representations we use the following bounds.

Lemma 2.4. Let g be compactly supported on Rn, and smooth on Rn \ {0}, with |∇kg(ξ)| ≲ |ξ|γ−k

for some γ > −n and k = 0, 1, . . . for ξ ̸= 0. Then |ĝ(x)| ≲ ⟨x⟩−n−γ . In particular, ĝ ∈ L1 if γ > 0.

Furthermore, for j ≥ 1 we have |∇j ĝ(x)| ≲ ⟨x⟩−n−j−γ .
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Proof. The bound is clear for |x| ≲ 1. For |x| ≳ 1, we write

ĝ(x) =

∫
Rn

e−2πix·ξg(ξ)[χ(ξ|x|) + χ̃(ξ|x|)] dξ

When |ξ||x| ≲ 1, the bound is clear by converting to polar coordinates. For |ξ||x| ≳ 1, we integrate

by parts k > γ + n times to bound by∫
|ξ|≳|x|−1

|ξ|γ−k|x|−k dξ ≲ |x|−γ−n.

The claim for derivatives follows because |ξ|jg satisfies the hypotheses with γ + j in place of γ.

□

Lemma 2.5. Let g be a smooth function, supported away from zero on Rn, that satisfies |∇kg(ξ)| ≲

|ξ|γ−k for some γ < 0 and k = 0, 1, 2, . . . . Then ĝ is a smooth function on Rn \ {0} satisfying

|∇N ĝ(x)| ≲


|x|−γ−n−N if γ +N > −n,

| log |x| | if γ +N = −n,

1 if γ +N < −n.

Morever for |x| ≳ 1, |∇N ĝ(x)| ≲ |x|−M for all M,N .

Proof. Noting that ∇kg ∈ L1 for sufficiently large k, we have, up to a distribution u supported at

zero, ĝ is a continuous function satisfying |ĝ(x)| ≲ |x|−M for all M and x ̸= 0. Since g decays at

infinity, u = 0. Similarly, ∇k|ξ|Ng ∈ L1 for sufficiently large k, so the derivatives also decay rapidly

at infinity.

To obtain the bounds for small |x| ≲ 1, we repeat the argument of Lemma 2.4 above for |ξ|Ng(ξ),

bounding the integral 1 ≲ |ξ| ≲ |x|−1 directly and integrating by parts sufficiently many times when

|x||ξ| ≳ 1.

□

Proof of Proposition 2.1. For a complex number z with 0 < arg z < π
α , the convolution kernel of

R0(z
2α) is the Fourier transform of the smooth function 1

|ξ|2α−z2α . This is a radial function which can

be rescaled as |z|−2α
(∣∣ ξ

|z|
∣∣2α − ( z

|z| )
2α
)−1

. It follows that

R0(z
2α)(x, y) = |z|n−2αFarg z(|z|r)

where r = |x− y|. Then by the definition of F (λr) in Proposition 2.1,

(4) F (λr) = (λr)n−2αe−iλr lim
arg z→0+

Farg z(λr).
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To determine properties of Farg z, it suffices to assume that |z| = 1. Let |z| = 1 with 0 < arg z < π
α .

We divide the function h(ξ) = 1
|ξ|2α−z2α into three pieces:

χ(4|ξ|)
|ξ|2α − z2α

+
1− χ( |ξ|2 )

|ξ|2α − z2α
+
χ( |ξ|2 )− χ(4|ξ|)
|ξ|2α − z2α

:= hctr(ξ) + htail(ξ) + hann(ξ).

We consider the Fourier transform for large ρ first, where ρ here denotes the Fourier variable. The

hctr piece is supported in the disk |ξ| < 1
2 and is smooth except for a polynomial singularity at the

origin. We write

hctr(ξ) = −z−2αχ(4|ξ|) +
[

1

|ξ|2α − z2α
+ z−2α

]
χ(4|ξ|).

Note that the first term is Schwartz, and the second term satisfies the hypotheses of Lemma 2.4 with

γ = 2α. It follows that, uniformly in arg z,

(5) |∇kĥctr(ρ)| ≲ ⟨ρ⟩−n−2α−k, k = 0, 1, 2, . . .

The existence of the limit as arg z → 0+ is clear. Using this bound in (4) with ρ = λr, we conclude

that the contribution of hctr to F (λr) satisfies

|∂Nλ Fctr(λr)| ≲ rN (λr)n−2α⟨λr⟩−n−2α ≲ λ−N ⟨λr⟩
n+1
2 −2α.

provided that N ≤ n+1+4α
2 . Further, for λr ≲ 1 we have

|∂Nλ Fctr(λr)| ≲ λ−N (λr)n−2α+N .

The htail(ξ) piece is supported in the region |ξ| > 2, with bounds on its derivatives |∇khctr(ξ)| ≲

|ξ|−2α−k. It follows that for any choice of M and N , we have

|∇N ĥtail(ρ)| ≲ ρ−M for ρ > 1,

uniformly in arg z.

When ρ < 1, noting that n − 2α > 0, the small ρ behavior of Farg z(ρ) is dominated by the

contribution of htail. In more detail,

(6) htail(ξ) =
1

|ξ|2α
−
χ( |ξ|2 )

|ξ|2α
+ z2α

1− χ( |ξ|2 )

|ξ|2α(|ξ|2α − z2α)
.

The first term contributes a constant multiple of ρ2α−n to ĥtail. The second term’s contribution to

ĥtail is bounded with bounded derivatives by Lemma 2.4. The last term behaves like |ξ|−4α for large

ξ. By Lemma 2.5 the N th derivative of its Fourier transform for ρ < 1 may be bounded by

(7)


1 4α−N > n

| log ρ| 4α−N = n

ρ4α−N−n 4α−N < n
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Hence we conclude that for ρ < 1,

(8) |∇N ĥtail(ρ)| ≲ ρ2α−n−N .

Using these bounds, we conclude that the contribution of htail to F (λr) in (4) satisfies the required

bounds

|∂Nλ Ftail(λr)| ≲ λ−N ⟨λr⟩
n+1
2 −2α.

For small λr, we may improve the bounds by writing (for ρ < 1)

ĥtail(ρ) =
cn,α
ρn−2α

+ ht2(ρ),

where

|∇Nht2(ρ)| ≲ 1 + ρ4α−N−n−.

So that, from (4), for N ≥ 1 we have (for λr < 1)

|∂Nλ Ftail(λr)| ≲ rN + λ−N (λr)n−2α + λ−N (λr)2α− ≲ λ−N (λr)min(1,n−2α,2α−).

We now turn to the contribution of hann(ξ), which becomes singular as arg z → 0+, so more care

is needed here. We compare its behavior to a multiple of the resolvent of the Laplacian in order to

take advantage of that operator’s well known properties.

We write

1

|ξ|2α − z2α
=

1

αz2α−2(|ξ|2 − z2)
+ J(z, ξ),

where

J(z, ξ) =
αz2α−2(|ξ|2 − z2)− (|ξ|2α − z2α)

αz2α−2(|ξ|2α − z2α)(|ξ|2 − z2)
=

α
(
( |ξ|z )2 − 1

)
−
(
( |ξ|z )2α − 1

)
αz2α

(
( |ξ|z )2α − 1

)(
( |ξ|z )2 − 1

) .
Let ζ = |ξ|

z , which allows some simplification to

J(z, ξ) =
α(ζ2 − 1)− (ζ2α − 1)

αz2α(ζ2α − 1)(ζ2 − 1)
.

With some abuse of notation, we denote this as J(z, ζ). The support of hann(ξ) consists of an annulus

contained in the region 1
4 ≤ |ξ| ≤ 4, and we are still assuming |z| = 1. Thus 1

4 ≤ |ζ| ≤ 4, and

the argument of ζ is exactly −arg z. Restricting |arg z| < π
2α ensures that J(z, ζ) is a meromorphic

function of ζ in the region corresponding to the support of hann(ξ), with a possible pole at ζ = 1.

The denominator of J(z, ζ) vanishes precisely at order (ζ − 1)2. Expanding the numerator in a

Taylor series around ζ = 1 yields the result

α(ζ2 − 1)− (ζ2α − 1) = 2α(1− α)(ζ − 1)2 +O(ζ − 1)3,
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hence J(z, ζ) is actually holomorphic in that region. It follows that J(z, ξ) is real-analytic in the

support of χ( |ξ|2 ) − χ(4|ξ|) and varies in an analytic way with z within the range |arg z| < π
2α . Now

we have the bound ∣∣∣∣F[(
χ
( | · |
2

)
− χ(4| · |)

)
J(z, ·)

]
(r)

∣∣∣∣ ≲ ⟨ρ⟩−M

for anyM <∞, and furthermore the constants are uniform over |arg z| < π
2α . The argument similarly

applies to derivatives. Its contribution to F (λr) in (4) follows as in the argument for hctr.

The remaining contribution of hann(ξ) to F (λr) comes from the Fourier transform of

χ( |ξ|2 )− χ(4|ξ|)
αz2α−2(|ξ|2 − z2)

=
1

αz2α−2(|ξ|2 − z2)
− χ(4|ξ|)
αz2α−2(|ξ|2 − z2)

−
1− χ( |ξ|2 )

αz2α−2(|ξ|2 − z2)
.

We consider cases when ρ > 1 and ρ < 1 separately, considering ρ > 1 first. The first term on the

right side is a constant multiple of the free resolvent of the Laplacian. The limit as arg z → 0+ is

known to exist and its kernel is of the form (for ρ > 1)

eiρ

ρn−2
F1(ρ), |∂Nρ F1(ρ)| ≲ ⟨ρ⟩

n−3
2 −N

for all N ≥ 0. Its contribution to F (λr) in (4) satisfies (2) when λr ≳ 1. The second term is smooth

and compactly supported, so its Fourier transform has Schwarz decay for large ρ. The third term is

similar to htail, and also gives rise to a kernel with Schwarz decay for large ρ (but a singularity as

ρ→ 0). This implies the claim for the contribution of Fann when λr ≳ 1.

Now, for λr ≲ 1 we consider the left hand side directly. Its Fourier transform is the resolvent kernel

of the Laplacian (−∆− z2)−1 mollified by a Schwarz function constructed from χ̂(ρ). As arg z → 0+,

the resolvent kernels converge to the limit (−∆− (1 + i0))−1(r). Then the mollification ensures that

the resulting function of ρ is smooth at the origin. So once again, for ρ ≲ 1 the contribution to

Farg z(ρ) is bounded and has bounded derivatives, uniformly up to the limit as arg z approaches zero.

This also satisfies the improved bounds for λr ≲ 1 as in the argument for hctr.

Finally, we observe that R+
0 (λ

2α)−R−
0 (λ

2α) is cλ2−2α times the analogous difference of resolvents

of the Laplacian. Both are scaled restrictions in frequency space to the sphere {|ξ| = λ}. The functions

F+ and F− are exactly the same as their counterparts for (−∆ − (λ2 ± i0))−1, which are known to

satisfy the bound (2), [17].

For small λr, to establish the second inequality in (3), we recall the proof of Lemma 2.4 in [17]. We

may write χ(r)F±(r) = F̃ (r)/(2 cos r) where F̃ (r) is entire with bounded derivatives and cos(r) ≥ 1
2 .

From here it is clear that

|∂Nλ F±(λr)| ≲ rN ⟨λr⟩
1−n
2 −N ,

which implies the claim.

□
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Proof of Proposition 2.2. The claim for λr ≳ 1 follows from the representation in Proposition 2.1.

When λr ≲ 1, from the proof of Proposition 2.1 we see that the contribution of hann and hctr

may be bounded by λn−2α. From (6), we see that the first term in htail contributes the Green’s

function r2α−n, the second term contributions λn−2α while the last term’s contribution depends on

the relative size of 4α and n. By (7) (with N = 0), we see that the contribution is λn−2α when

n < 4α, λn−2α| log(λr)| when n = 4α and λ2αr4α−n when n > 4α. When n = 4α since λ ≲ 1 we

bound | log(λr)| by log−.

□

Proof of Proposition 2.3. We first consider when V = 0. The proof of Proposition 2.2 implies that

limϵ→0+ R0(λ
2α + iϵ) exists and is equal to 1

αλ
2−2αR+

0 (λ
2) plus an error term which consists of the

contributions of the Fourier transforms of hctr, htail, J(z, ξ), and

(9) − χ(4|ξ|)
αz2α−2(|ξ|2 − z2)

−
1− χ( |ξ|2 )

αz2α−2(|ξ|2 − z2)
.

By the limiting absorption principle for the classical Schrödinger operator, the main piece,

1
αλ

2−2αR+
0 (λ

2), satisfies the claim. To finish the proof it suffices to show that the Fourier trans-

form of the remaining terms are bounded by ρ1−n. Indeed, the contribution to R+
0 (λ

2α) is bounded

by λn−2α(λr)1−n = λ1−2αr1−n, which satisfies the claim by boundedness of the fractional integral

operators, see Lemma 2.3 in [29].

The contribution J(z, ξ) and the first term in (9) satisfy the claim because they are Schwartz. From

(5), hctr(ρ) ≲ ⟨ρ⟩−n−2α ≲ ρ1−n, so its contribution to the free resolvent is bounded by λ1−2αr1−n.

Since htail has Schwartz decay for large ρ and is at worst ρ2α−n ≲ ρ1−n for small ρ, since α > 1
2 ,

its contribution is also bounded by λ1−2αr1−n. As in the analysis of htail the second term in (9)

contributes a Schwartz decay for large ρ. For small ρ it contributes either ρ2−n ≲ ρ1−n for n > 2 and

| log ρ| ≲ ρ1−n when n = 2. This establishes the claim for R±
0 (λ

2α).

We now turn to R±
V (λ

2α). As in the classical case this follows from the claim for the free resolvent

by utilizing the symmetric resolvent identity

(10) R±
V (λ

2α) = R±
0 (λ

2α)−R±
0 (λ

2α)v[U + vR±
0 (λ

2α)v]−1vR±
0 (λ

2α),

where v = |V | 12 , U = sgn(V ) and and by establishing uniform bounds on [U + vR±
0 (λ

2α)v]−1 on L2.

A uniform bound on compact intervals was established in [36] by applying Agmon’s method. And for

large λ it’s simpler by noting that ∥vR±
0 (λ

2α)v∥L2→L2 ≤ CV λ
1−2α < 1

2 provided λ is large enough

since α > 1
2 .

For the derivatives, the claim follows from the resolvent identity and the corresponding claims for

R±
0 (λ

2α). The contribution of the free Schrödinger resolvent is well-known. For the error term we

consider the contribution of the second term in (9). The Fourier transform for large ρ has Schwartz
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decay and hence satisfies the claim. For small ρ, by Lemma 2.5 it’s jth derivative is bounded by

ρ2−n−j , whose contribution to the jth derivative of the free resolvent by the chain rule is bounded by

λn−2αrj(λr)2−n−jχ(λr) ≲ λ1−2α−jr1−n.

Since j ≥ 1 this maps L2, 12+ → L2,− 1
2− with smaller operator norm. The contribution of htail can be

handled similarly using (8) for small ρ and the Schwartz decay for large ρ. The contribution of the

other terms are simpler.

The claim for the derivatives of the perturbed resolvent follows from (10) noting that

∂λ[U + vR±
0 (λ

2α)v]−1 = [U + vR±
0 (λ

2α)v]−1v∂λR±
0 (λ

2α)v[U + vR±
0 (λ

2α)v]−1,

and its iterates for higher derivatives. This requires |v(x)| ≲ ⟨x⟩− 1
2−j−.

□

3. Proof of Theorem 1.1

Employing the Stone’s formula, Theorem 1.1 follows by proving

sup
L≥1

sup
x,y∈R2

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ4α−3χ(λ/L)[R+
V −R−

V ](λ
2α)(x, y) dλ

∣∣∣∣ ≲ 1

|t|
.

This will be done in two subsections by addressing high energies, when λ ≳ 1, and low energies, when

0 < λ≪ 1, separately.

3.1. High energy. In this subsection we prove the following proposition.

Proposition 3.1. Fix 3
4 ≤ α < 1 and assume that |V (x)| ≲ ⟨x⟩−β for some β > 5

2 and that H has

no embedded eigenvalues. Then,

sup
L≥1

sup
x,y∈R2

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ4α−3χ̃(λ)χ(λ/L)R±
V (λ

2α)(x, y) dλ

∣∣∣∣ ≲ 1

|t|
.

In the high energy argument we don’t utilize any cancellation from the difference of the ‘+’ and

‘-’ limiting resolvents. We drop the superscript and note that the arguments presented handle both

cases. As usual, we iterate the resolvent identity to form a Born series

RV =

2K∑
k=0

(−R0V )kR0 + (R0V )KRV (VR0)
K ,

and bound the finite Born series terms and the tail separately. We first consider the contribution of

the kth Born series term:

Lemma 3.2. Fix k > 0 and 3
4 ≤ α < 1. If |V (x)| ≲ ⟨x⟩−β for some β > 2α, then

sup
L≥1

sup
x,y∈R2

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ4α−3χ̃(λ)χ(λ/L)[(R0V )kR0](λ
2α)(x, y) dλ

∣∣∣∣ ≲ 1

|t|
.
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Proof. Define z0 := x and zk+1 := y and let rj = |zj − zj−1| for j ≥ 1. Using Proposition 2.1 we need

to control

(11)

∫
R2k

∫ ∞

0

eitλ
2α+iλRλ4α−3χ̃(λ)χ(λ/L)

k+1∏
j=1

F (λrj)

r2−2α
j

k∏
i=1

V (zi)dλ dz⃗,

where R =
∑k+1

j=1 rj and dz⃗ = dz1dz2 · · · dzk.

If t > 0 there is no critical point of the phase in the support of the integral. If t < 0, the critical

point of the phase is at

λ0 =

(
−R
2αt

) 1
2α−1

.

We first consider the case when λ ̸∼ λ0 when t < 0, or when t > 0 and λ ≳ 1. In these cases we may

integrate by parts using

eitλ
2α+iλR =

1

2itαλ2α−1 + iR

d

dλ
eitλ

2α+iλR.

Note that in the cases being considered, the denominator in magnitude is ≳ |t|λ2α−1. This is easy to

see when t > 0, when t < 0 we note that the two terms in the denominator are not comparable in

size, so we use the first one. Now,

|(11)| =
∣∣∣∣ ∫

R2k

∫ ∞

0

eitλ
2α+iλR d

dλ

[
λ4α−3χ̃(λ)χλ̸∼λ0(λ)χ(λ/L)

2itαλ2α−1 + iR

k+1∏
j=1

F (λrj)

r2−2α
j

k∏
i=1

V (zi)

]
dλ dz⃗

∣∣∣∣
≲

1

|t|

∫
R2k

∫ ∞

1

λ2α−3
k+1∏
j=1

⟨λrj⟩
3
2−2α

r2−2α
j

k∏
i=1

|V (zi)|dλ dz⃗ ≲
1

|t|

∫
R2k

1

r2−2α
j

k∏
i=1

|V (zi)| dz⃗ ≲
1

|t|
.

Since 3
4 ≤ α < 1, we ignore the ⟨λrj⟩ contribution and the λ integral is finite. Under the decay

conditions on V and the conditions on α, the spatial integrals are finite.

Next we consider when t < 0 and 1 ≲ λ ∼ λ0. Let rj0 = max1≤j≤k+1 rj and apply Van der Corput.

Note that | d2

dλ2 (tλ
2α + λR)| ≈ |tλ2α−2

0 |, so that

|(11)| ≲
∫
R2k

|tλ2α−2
0 |− 1

2

∫
λ∼λ0

∣∣∣∣ ddλ
[
λ4α−3χ̃(λ)χ(λ/L)

k+1∏
j=1

F (λrj)

r2−2α
j

k∏
i=1

V (zi)

]∣∣∣∣dλ dz⃗
≲

∫
R2k

|tλ2α−2
0 |− 1

2

∫
λ∼λ0

∣∣∣∣λ4α−4χ̃(λ)χ(λ/L)

k+1∏
j=1

⟨λrj⟩
3
2−2α

r2−2α
j

k∏
i=1

V (zi)

∣∣∣∣dλ dz⃗
≲

∫
R2k

|tλ2α−2
0 |− 1

2

∫
λ∼λ0

∣∣∣∣λ2α− 5
2

r
1
2
j0

χ̃(λ)χ(λ/L)

k+1∏
j=1,j ̸=j0

1

r2−2α
j

k∏
i=1

V (zi)

∣∣∣∣dλ dz⃗
≲

∫
R2k

|t|− 1
2

∣∣∣∣λα−
1
2

0

r
1
2
j0

k+1∏
j=1,j ̸=j0

1

r2−2α
j

k∏
i=1

V (zi)

∣∣∣∣dz⃗ ≲ 1

|t|
.

Here we used that ⟨λrj⟩
3
2−2α ≲ 1 for any j ̸= j0 and ⟨λrj0⟩

3
2−2α ≲ (λrj0)

3
2−2α, and the spatial

integrals are bounded as above.
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□

We now consider the final term in the Born series.

Lemma 3.3. Fix K > 0 large enough, 3
4 ≤ α < 1, and assume that |V (x)| ≲ ⟨x⟩−β for some β > 5

2 .

Then, if H has no embedded eigenvalues,

sup
L≥1

sup
x,y∈R2

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ4α−3χ̃(λ)χ(λ/L)[(R0V )KRV (VR0)
K ](λ2α)(x, y) dλ

∣∣∣∣ ≲ 1

|t|
.

Proof. Let

ax,y(λ) = λ4α−3χ̃(λ)χ(λ/L)e−iλ|x|e−iλ|y|[(R0V )KRV (VR0)
K ](λ2α)(x, y)

We claim that

|∂jλax,y(λ)| ≲ λ−2⟨x⟩− 1
2 ⟨y⟩− 1

2 , j = 0, 1.

For j = 0, using the limiting absorption principle in Proposition 2.3 for both RV and R0, we have

|ax,y(λ)| ≲ λ4α−3(λ1−2α)2K−1∥R0(x, ·)V (·)⟨·⟩ 1
2+∥L2∥⟨·⟩ 1

2+V (·)R0(·, y)∥L2 ≲ λ−2⟨x⟩− 1
2 ⟨y⟩− 1

2 .

Where in the last inequality we used (2) to see that

|R0(λ
2α)(x, x1)V (x1)⟨x1⟩

1
2+| ≲ ⟨λ|x− x1|⟩

3
2−2α

|x− x1|2−2α⟨x1⟩β−
1
2−

≲
λ

3
2−2α

|x− x1|
1
2 ⟨x1⟩β−

1
2−
.

So that if β > 3
2 , the L

2 norm is bounded by ⟨x⟩− 1
2 . For j = 1 we note that for the leading and

lagging resolvents we have

∂λ
[
e−iλ|x|R0(λ

2α)(x, x1)
]
= ∂λ

[
e−iλ(|x|−|x−x1|)F (λ|x− x1|)

|x− x1|2−2α

]
.

If the derivative hits the phase we bound |x| − |x − x1| by ⟨x1⟩. the remaining part of the proof is

similar but requires β > 5
2 since one needs to account for a larger weight.

It suffices to consider ∫ ∞

1

eitλ
2α+iλ(|x|+|y|)ax,y(λ) dλ.

It is clear that this is bounded by one uniformly in x, y. For the time decay, as in the proof of

Lemma 3.2, we consider the cases of λ ∼ λ0 = (− |x|+|y|
2αt )

1
2α−1 and λ ̸∼ λ0.

In the case when λ ̸∼ λ0, one integration by parts results in∣∣∣∣ ∫ ∞

1

eitλ
2α+iλ(|x|+|y|)ax,y(λ) dλ

∣∣∣∣ ≲ 1

|t|

∫ ∞

1

λ−2−2α dλ ≲
1

|t|
.

When λ ∼ λ0, by Van der Corput, we have∣∣∣∣ ∫ ∞

1

eitλ
2α+iλ(|x|+|y|)ax,y(λ) dλ

∣∣∣∣ ≲ |t|− 1
2 ⟨x⟩− 1

2 ⟨y⟩− 1
2 |λ0|1−α

∫
λ∼λ0

λ−2 dλ ≲
⟨x⟩− 1

2 ⟨y⟩− 1
2

|t| 12
≲ |t|−1.

Where we used that λ0 ≳ 1, which in particular implies that |t| ≲ |x|+ |y|.

□



DISPERSIVE ESTIMATES FOR FRACTIONAL SCHRÖDINGER OPERATORS 13

Proposition 3.1 now follows from the Born series expansion and Lemmas 3.2 and 3.3.

3.2. Low energy. We now consider the low energy, when 0 < λ < λ0 for a sufficiently small constant

λ0 ≪ 1. We utilize the symmetric resolvent identity,

(12) R±
V (λ

2α) = R±
0 (λ

2α)−R±
0 (λ

2α)vM−1
± (λ)vR±

0 (λ
2α),

where v = |V | 12 , U = sgn(V ) and M±(λ) = U + vR±
0 (λ

2α)v. By the assumption that zero is regular,

we have that M±(0) = U + vR±
0 (0)v is invertible on L2(R2). The following proposition finishes the

proof of Theorem 1.1.

Proposition 3.4. If zero is a regular point of H and |V (x)| ≲ ⟨x⟩−β for some β > 4, then

sup
x,y∈R2

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ4α−3χ(λ)[R+
V −R−

V ](λ
2α)(x, y) dλ

∣∣∣∣ ≲ 1

|t|
.

We first prove the following lemma.

Lemma 3.5. For sufficiently small λ0, if |V (x)| ≲ ⟨x⟩−β for some β > 3 and zero is regular, then

the operators M±(λ) are invertible on L2. Furthermore,∥∥∥∥ sup
0<λ<λ0

|M−1
± (λ)|+ λ1−|∂λM−1

± (λ)|
∥∥∥∥
L2→L2

<∞.

In addition,∥∥∥∥ sup
0<λ<λ0

λ2α−2|[M−1
+ −M−1

− ](λ)|+ λ2α−1−|∂λ[M−1
+ −M−1

− ](λ)|
∥∥∥∥
L2→L2

<∞.

Proof. From Proposition 2.2, we write

M+(λ) = U + vR+
0 (0)v + E(λ), E(λ) = O(λ2−2α|v|(x)|v|(y)).

If |V (x)| ≲ ⟨x⟩−β for β > 2, we have

sup
0<λ<λ0

|E(λ)| ≲ λ2−2α
0 ⟨x⟩−1−⟨y⟩−1−,

which is bounded on L2.

Let T0 = U + vR+
0 (0)v, by a standard argument T−1

0 is absolutely bounded. Namely, we since

|[vR+
0 v](0)(x, y)| ≲ ⟨x⟩−

β
2 I2α(x, y)⟨y⟩−

β
2 with I2α the fractional integral operator. As in the proof of

Lemma 5.1, the resulting operator is bounded on L2, and in this case is even Hilbert-Schmidt. By

the resolvent identity, we have T−1
0 = U [I − (vR+

0 (0)v)T
−1
0 ]. The first term, U is clearly absolutely

bounded while vR+
0 (0)vT

−1
0 is the composition of a Hilbert-Schmidt and bounded operator and is

hence Hilbert-Schmidt and consequently absolutely bounded.

So, the claim follows by a Neumann series expansion for sufficiently small λ0. For the derivative,

we use the resolvent identity to write

∂λM
−1
+ (λ) =M−1

+ (λ)v∂λR+
0 (λ

2α)vM−1
+ (λ).
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We note that, by Proposition 2.2 we have

λ1−|∂λR+
0 (λ

2α)(x, y)| ≲ λ1−|x− y| ⟨λ|x− y|⟩ 3
2−2α

|x− y|2−2α
+ λ1−λ−1(λ|x− y|)0+ ⟨λ|x− y|⟩ 3

2−2α

|x− y|2−2α

≲
1

|x− y|2−2α− + |x− y| 12 .

The last bound is seen by considering the cases of λ|x− y| < 1 and λ|x− y| ≥ 1 separately. Then

sup
0<λ<λ0

λ1−|∂λ[vR+
0 (λ

2α)v](x, y)|

is bounded on L2 provided β > 3.

The second claim follows from the resolvent identity:

[M−1
+ −M−1

− ](λ) = −M−1
+ (λ)v[R+

0 (λ
2α)−R−

0 (λ
2α)]vM−1

− (λ)

= −λ2−2αM−1
+ (λ)v[eiλrF+(λr) + e−iλrF−(λr)]vM

−1
− (λ)

The claim now follows as above from (3) and the bounds on M−1
± .

□

Proof of Proposition 3.4. It suffices to consider the contribution of the following operators toR+
V −R−

V

in (12): R−
0 (λ

2α)vM−1
+ (λ)v[R+

0 (λ
2α)−R−

0 (λ
2α)] and R−

0 (λ
2α)v[M−1

+ −M−1
− ](λ)vR+

0 (λ
2α). In both

cases we consider an operator Γ(λ) of the form where

Γ̃ := sup
0<λ<λ0

(|Γ(λ)|+ λ1−|Γ′(λ)|)

is bounded on L2. By Lemma 3.5 both M−1
+ (λ) and λ2α−2[M−1

+ −M−1
− ](λ) satisfy this bound.

By Proposition 2.2 and the definition of Γ(λ) above, we need to control

(13)

∫ 1

0

eitλ
2α+iλ(|x|∓|y|)λ2α−1χ(λ)ax,y(λ) dλ,

where (with r1 = |x− z1| and r2 = |z2 − y|)

(14) ax,y(λ) =

∫
R4

eiλ(r1−|x|±(r2−|y|))F (λr1)

r2−2α
1

v(z1)Γ(λ)(z1, z2)v(z2)

(
F (λr2)

r2−2α
2

+ F±(λr2)

)
dz1 dz2.

Note that, using |F (·)|, |F±(·)| ≲ 1, we have

|ax,y(λ)| ≲
∥∥∥∥ v(·)
|x− ·|2−2α

∥∥∥∥
L2

∥Γ̃∥L2→L2

∥∥∥∥v(·)(1 + 1

| · −y|2−2α

)∥∥∥∥
L2

≲ 1,

uniformly in x, y ∈ R2, provided that β > 2.

On the other hand, assuming |y| > |x| and using |F (λr2)| ≲ λ
3
2−2αr

3
2−2α
2 and |F±(λr2)| ≲ λ−

1
2 r

− 1
2

2 ,

we have (provided β > 2)

|ax,y(λ)| ≲ λ−
1
2

∥∥∥∥ v(·)
|x− ·|2−2α

∥∥∥∥
L2

∥Γ̃∥L2→L2

∥∥∥∥ v(·)
| · −y| 12

∥∥∥∥
L2

≲ λ−
1
2 ⟨y⟩− 1

2 ,
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where we used that 3
2 − 2α > − 1

2 and 0 < λ < 1. The case of |x| > |y| follows similarly with a bound

of λ−
1
2 ⟨x⟩− 1

2 . So that, |ax,y(λ)| ≲ min(1, λ−
1
2 (⟨x⟩+ ⟨y⟩)− 1

2 ).

Further, using (2), assuming |y| > |x| and β > 4 we have

|∂λax,y(λ)| ≲ λ−
3
2

∥∥∥∥ v(·)⟨·⟩
|x− ·|2−2α

∥∥∥∥
L2

∥Γ̃∥L2→L2

∥∥∥∥ v(·)⟨·⟩
| · −y| 12

∥∥∥∥
L2

≲ λ−
3
2 (⟨x⟩+ ⟨y⟩)− 1

2 .

Here we used that |r1 − |x|| ≲ ⟨z1⟩, and note that the case of |x| > |y| follows similarly.

On the other hand, using (3), we have |∂λF (λr)|, |∂λF±(λr)| ≲ λ−1(λr)0+ we have

|∂λax,y(λ)| ≲ λ−1+

∥∥∥∥ v(·)⟨·⟩
|x− ·|2−2α−

∥∥∥∥
L2

∥Γ̃∥L2→L2

∥∥∥∥v(·)⟨·⟩⟨· − y⟩0+
(
1 +

1

| · −y|2−2α

)∥∥∥∥
L2

≲ λ−1(λ⟨y⟩)0+.

So that |∂λax,y(λ)| ≲ λ−1 min((λ(⟨x⟩+ ⟨y⟩))0+, (λ(⟨x⟩+ ⟨y⟩))− 1
2 ). We note that this is an L1 function

of λ uniformly in x, y.

When λ ∼ λ0, by Van der Corput we have

|t|− 1
2λ1−α

0

∫
λ∼λ0

|∂λ[λ2α−1ax,y(λ)]| dλ ≲ |t|− 1
2λ1−α

0

∫
λ∼λ0

λ2α−
5
2 (⟨x⟩+ ⟨y⟩)− 1

2 dλ

≲ |t|− 1
2λ

α− 1
2

0 (⟨x⟩+ ⟨y⟩)− 1
2 ≲ |t|− 1

2

(
|x| ∓ |y|

|t|

) 1
2

(⟨x⟩+ ⟨y⟩)− 1
2 ≲ |t|−1.

When λ ̸∼ λ0 we integrate by parts to see the bound∣∣∣∣ ddλ
[

λ2α−1

tλ2α−1 + (|x| ∓ |y|)
ax,y(λ)

]∣∣∣∣ ≲ | sup
λ
ax,y(λ)|

∣∣∣∣ ddλ λ2α−1

tλ2α−1 + (|x| ∓ |y|)

∣∣∣∣+ 1

|t|
|∂λax,y(λ)|.

The contribution of the first term is bounded by its supremum on the support of the integral since it

changes sign finitely many times, which yield a bound of |t|−1. The contribution of the second term

is also |t|−1 since ∂λax,y(λ) is in L
1
λ uniformly in x, y.

□

4. Proof of Theorem 1.2

As in the n = 2 argument, employing the Stone’s formula, Theorem 1.2 follows by proving

sup
L≥1

sup
x,y∈Rn

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ2α−1χ(λ/L)[R+
V −R−

V ](λ
2α)(x, y) dλ

∣∣∣∣ ≲ |t|− n
2α .

This will again be done in two subsections by addressing high energies and low energies separately.

4.1. High energy. In this section we prove the following bound.

Proposition 4.1. Fix n+1
4 ≤ α < n

2 . If H has no embedded eigenvalues and |V (x)| ≲ ⟨x⟩−β for some

β > max(n+1
2 , n

2α + 5
2 ), then

sup
L≥1

sup
x,y∈Rn

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ2α−1χ̃(λ)χ(λ/L)R±
V (λ

2α)(x, y) dλ

∣∣∣∣ ≲ |t|− n
2α .

The following lemma takes care of the contribution of the kth Born series term.
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Lemma 4.2. Fix k > 0 and n+1
4 ≤ α < n

2 . If |V (x)| ≲ ⟨x⟩−β for some β > n+1
2 , then

sup
L≥1

sup
x,y∈Rn

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ2α−1χ̃(λ)χ(λ/L)[(R0V )kR0](λ
2α)(x, y) dλ

∣∣∣∣ ≲ |t|− n
2α .

Proof. This contribution of the kth term of the Born series to the Stone’s formula representation is

an integral of the form

(15)

∫
R2k

∫ ∞

0

eitλ
2α+iλRλ2α−1χ̃(λ)χ(λ/L)

k+1∏
j=1

F (λrj)

rn−2α
j

k∏
i=1

V (xk) dλdx⃗,

where rj = |xj − xj−1| and R =
∑
rj . We consider two regimes, first if λ ̸∼ λ0 = (−R

2αt )
1

2α−1 we

may integrate by parts twice without boundary terms. Define χλ0
(λ) to be a smooth cut-off to the

neighborhood 1
2λ0 < λ < 2λ0, and χ̃λ0

(λ) = 1 − χλ0
(λ). Denoting λ2α + R

t := ϕ(λ), we see (for

|t| ≳ 1)

|(15)| ≲ 1

|t|2

∫
R2k

∫ ∞

1

∣∣∣∣∂λ( 1

ϕ′(λ)
∂λ

(
λ2α−1

ϕ′(λ)
χ̃(λ)χ̃λ0

(λ)χ(λ/L)

k+1∏
j=1

F (λrj)

rn−2α
j

)) k∏
i=1

V (xk)

∣∣∣∣ dλdx⃗
≲

1

|t|2

∫
R2k

∫ ∞

1

λ−2α−3−k(n+1
2 −2α) dλ

k+1∏
j=1

1

r
n−1
2

j

k∏
i=1

|V (xk)| dx⃗.

Here we used that |ϕ′(λ)| = |2αλ2α−1 + R/t| = |2α(λ2α−1 − λ2α−1
0 )| ≳ λ2α−1, (2), and that all

derivatives are bounded by division by λ. Since n+1
2 − 2α < 0 and −2α − 3 < −1, the integral

converges. The spatial integrals are bounded provided |V (x)| ≲ ⟨x⟩−n+1
2 − by standard arguments.

This suffices to ensure we get a large time bound of size |t|−n/2α as desired.

For small times, we need to consider cases based on α and n. First, if α > n+1
4 we can integrate

by parts once to see its contribution to (15) is bounded by

1

|t|

∫
R2k

∫ ∞

1

∣∣∣∣∂λ(λ2α−1

ϕ′(λ)
χ̃(λ)χ̃λ0

(λ)χ(λ/L)

k+1∏
j=1

F (λrj)

rn−2α
j

) k∏
i=1

V (xk)

∣∣∣∣ dλdx⃗
≲

1

|t|

∫
R2k

∫ ∞

1

λ−1 dλ

k+1∏
j=1

⟨λrj⟩
n+1
2 −2α

rn−2α
j

k∏
i=1

|V (xk)| dx⃗

≲
1

|t|

∫
R2k

∫ ∞

1

λ−1−(k+1)(n+1
2 −2α) dλ

k+1∏
j=1

1

r
n−1
2

j

k∏
i=1

|V (xk)| dx⃗.

Since n+1
2 − 2α > 0, the λ integral converges. The spatial integrals converge provided |V (x)| ≲

⟨x⟩−n+1
2 −. This suffices for small |t| ≲ 1.

Finally, if |t| < 1 and α = n+1
4 we integrate by parts twice and use |tϕ′(λ)| = |2αtλ2α−1 + R| ≳

(|t|λ2α−1)
1
2R

1
2 to see that
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1

|t|2

∫
R2k

∫ ∞

1

∣∣∣∣∂λ( 1

ϕ′(λ)
∂λ

(
λ2α−1

ϕ′(λ)
χ̃(λ)χ(λ/L)

k+1∏
j=1

F (λrj)

rn−2α
j

)) k∏
i=1

V (xk)

∣∣∣∣ dλdx⃗
≲

1

|t| 32

∫
R2k

∫ ∞

1

λ−
3
2

R
1
2

dλ

k+1∏
j=1

1

r
n−1
2

j

k∏
i=1

|V (xk)| dx⃗

≲
1

|t| 32

∫
R2k

k+1∏
j=1

1

r
n−1
2 + 1

2k+2

j

k∏
i=1

|V (xk)| dx⃗.

Since n
2α = 2n

n+1 = 2 − 2
n+1 ≥ 3

2 , this suffices for small |t|. The spatial integrals converge when

|V (x)| ≲ ⟨x⟩−n+1
2 −.

We now consider when λ is in a neighborhood of the critical point. In this case, for λ0 to be in the

support of χ̃(λ) we must have |t| ≲ R. We proceed by integrating by parts once, this time without

combining the phases to express its contribution to (15) as

∫
R2k

∫ ∞

0

eitλ
2α

λ2α−1χ̃(λ)χλ0
(λ)χ(λ/L)eiλR

k+1∏
j=1

F (λrj)

rn−2α
j

k∏
i=1

V (xk) dλdx⃗

=
1

2αit

∫
R2k

∫ ∞

0

eitλ
2α

∂λ

(
χ̃(λ)χλ0(λ)χ(λ/L)e

iλR
k+1∏
j=1

F (λrj)

rn−2α
j

) k∏
i=1

V (xk) dλdx⃗

:=
1

t

∫
R2k

∫ ∞

0

eitλ
2α+iλRax⃗(λ) dλdx⃗,

with

ax⃗(λ) =
1

2αi

[
∂λ

(
χ̃(λ)χλ0

(λ)χ(λ/L)

k+1∏
j=1

F (λrj)

rn−2α
j

)

+ iR

(
χ̃(λ)χλ0(λ)χ(λ/L)

k+1∏
j=1

F (λrj)

rn−2α
j

)] k∏
i=1

V (xk).

On the support of χλ0
(λ), we may employ Van der Corput to bound by

1

|t| 32

∫
R2k

λ1−α
0

∫
λ∼λ0

|∂λax⃗(λ)| dλ dx⃗

≲
1

|t| 32

∫
R2k

λ1−α
0

∫
λ∼λ0

(R+ λ−1)λ−1
k+1∏
j=1

⟨λrj⟩
n+1
2 −2α

rn−2α
j

dλ

k∏
i=1

|V (xk)| dx⃗

≲
1

|t| 32

∫
R2k

(R+ 1)λ
1−α−(k+1)(2α−n+1

2 )
0

k+1∏
j=1

1

r
n−1
2

j

k∏
i=1

|V (xk)| dx⃗.

Where we used that λ0 ≳ 1 in the last bound. From here, we must consider cases based on the relative

sizes of n and α, specifically whether n
2α ≤ 3

2 or n
2α > 3

2 . We first consider when n
2α ≤ 3

2 , so that
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0 ≤ 3
2 − n

2α < 1
2 . Note that n

3 ≤ α in this case. Using that |t| ≈ λ2α−1
0 /R we have

1

|t| 32
≈ 1

|t| n
2α

(
λ2α−1
0

R

) 3
2−

n
2α

=
1

|t| n
2α

λ
(2α−1)( 3

2−
n
2α )

0

R
3
2−

n
2α

Now, since k ≥ 1, we have the total power of λ0 is

(2α− 1)

(
3

2
− n

2α

)
+ 1− α− (k + 1)

(
2α− n+ 1

2

)
≤ 1

2
+

n

2α
− 2α ≤ 0.

From this, we can see that

1

|t| 32
(R+ 1)λ

1−α−(k+1)(2α−n+1
2 )

0

k+1∏
j=1

1

r
n−1
2

j

≲
1

|t| n
2α

1

R
3
2−

n
2α

(R+ 1)

k+1∏
j=1

1

r
n−1
2

j

Let rj0 = max(rj) and note that R ≈ rj0 and 0 ≤ 3
2 − n

2α < 1
2 , so that

R+ 1

R
3
2−

n
2α

1

r
n−1
2

j0

≲
1

r
n−3
2

j0

+
1

r
n
2 −
j0

.

The spatial integrals converge when |V (x)| ≲ ⟨x⟩−n+1
2 −.

When n
2α > 3

2 , using R ≳ |t| we have

1

|t| 32
≲

1

|t| n
2α
R

n
2α− 3

2 .

Furthermore, since α ≥ n+1
4 ≥ 1, we have

1− α− (k + 1)(2α− n+ 1

2
) ≤ 0,

so we may bound by (with rj0 = max(rj) ≈ R)

1

|t| 32

∫
R2k

(R+ 1)λ
1−α−(k+1)(2α−n+1

2 )
0

k+1∏
j=1

1

r
n−1
2

j

dλ

k∏
i=1

|V (xk)| dx⃗

≲
1

|t| n
2α

∫
R2k

(R
n
2α− 1

2 +R
n
2α− 3

2 )

k+1∏
j=1

1

r
n−1
2

j

dλ

k∏
i=1

|V (xk)| dx⃗

≲
1

|t| n
2α

∫
R2k

(
1

r
n
2 − n

2α
j0

+
1

r
n+2
2 − n

2α
j0

) k+1∏
j=1,j ̸=j0

1

r
n−1
2

j

dλ

k∏
i=1

|V (xk)| dx⃗,

noting that n
2 − n

2α ≥ 0 and n+2
2 − n

2α < n
2 , the spatial integrals are controlled as before, provided

|V (x)| ≲ ⟨x⟩−β for some β > n+1
2 .

□

The following lemma takes care of the contribution of tail of the Born series and finishes the proof

of the high energy portion of Theorem 1.2.
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Lemma 4.3. Fix n+1
4 ≤ α < n

2 and K sufficiently large. If H has no embedded eigenvalues and

|V (x)| ≲ ⟨x⟩−β for some β > n
2α + 5

2 , then

sup
L≥1

sup
x,y∈Rn

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ2α−1χ̃(λ)χ(λ/L)[(R0V )KRV (VR0)
K ](λ2α)(x, y) dλ

∣∣∣∣ ≲ 1

|t| n
2α
.

Proof. Let

ax,y(λ) = λ2α−1χ̃(λ)χ(λ/L)e−iλ|x|e−iλ|y|[(R0V )KRV (VR0)
K ](λ2α)(x, y).

We prove below that for sufficiently large K,

(16) |∂jλax,y(λ)| ≲ λ−2⟨x⟩ 1
2−

n
2α ⟨y⟩ 1

2−
n
2α , j = 0, 1, 2.

Using these bounds, it suffices to consider∫ ∞

1

eitλ
2α+iλ(|x|+|y|)ax,y(λ) dλ.

It is clear that this integral is bounded by one uniformly in x, y. For the time decay, as in the proof

of Lemma 3.2, we consider the cases of λ ∼ λ0 = (− |x|+|y|
2αt )

1
2α−1 and λ ̸∼ λ0.

In the case when λ ̸∼ λ0, two integrations by parts and (16) results in∣∣∣∣ ∫ ∞

1

eitλ
2α+iλ(|x|+|y|)ax,y(λ) dλ

∣∣∣∣ ≲ 1

|t|2

∫ ∞

1

λ−2 dλ ≲
1

|t|2
.

When λ ∼ λ0 ≳ 1, by Van der Corput and (16), we have∣∣∣∣ ∫ ∞

1

eitλ
2α+iλ(|x|+|y|)ax,y(λ) dλ

∣∣∣∣ ≲ |t|− 1
2 ⟨x⟩ 1

2−
n
2α ⟨y⟩ 1

2−
n
2α |λ0|1−α

∫
λ∼λ0

λ−2 dλ

≲
⟨x⟩ 1

2−
n
2α ⟨y⟩ 1

2−
n
2α

|t| 12
≲ |t|− n

2α .

Where we used that λ0 ≳ 1, which in particular implies that |t| ≲ |x|+ |y|.

To complete the proof, we must establish the bounds in (16). Notice that

(17) ∂jλax,y(λ) =
∑

∂j1λ [λ2α−1χ̃(λ)χ(λ/L)]∂j2λ [e−iλ|x|R0(λ
2α)(x, ·)]V

× ∂j3λ [(R0V )K−1RV (VR0)
K−1](λ2α)V ∂j4λ [e−iλ|y|R0(λ

2α)(·, y)],

where the sum is taken of ji ≥ 0 with
∑
ji = j.

We note that, since λ ≳ 1, by Proposition 2.1 we have

|∂jλe
−iλ|x|R+

0 (λ
2α)(x, x1)V (x1)| ≲

⟨x1⟩j−β

|x− x1|
n−1
2

We note that n−1
2 ≥ n

2α − 1
2 . So that, we have

∥∂jλe
−iλ|x|R+

0 (λ
2α)(x, ·)V (·)⟨·⟩ 5

2−j+∥2 ≲ ∥⟨·⟩ 5
2−β+|x− ·|

1−n
2 ∥2 ≲ ⟨x⟩ 1

2−
n
2α
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provided that |V (x)| ≲ ⟨x⟩−β for some β > n
2α + 5

2 . The remainder of the proof mimics that of

Lemma 3.3. By iterating the limiting absorption principle in Proposition 2.3 sufficiently, the bounds

follow since 1− 2α < 0.

The decay on V is necessitated by when all derivatives act on a single resolvent. If this resolvent

is an inner resolvent, to apply Proposition 2.3 we need multiplication by V to map L2,− 5
2− → L2, 12+,

which necessitates β > 3. If all derivatives in (17) act on the first and second (respectively last and

second to last) resolvents, we need to bound

∥∂j1λ e
−iλ|x|R+

0 (λ
2α)(x, ·)V (·)⟨·⟩ 5

2−j1+∥2∥∂2−j1
λ R0(λ

2α)∥
L2, 5

2
−j1+→L2,j1− 5

2
− ,

This requires β > n
2α + 5

2 as described above.

□

4.2. Low energies. We now consider the low energy, when 0 < λ < λ0 for a sufficiently small constant

λ0 ≪ 1. We utilize the symmetric resolvent identity, (12). The low energy claim of Theorem 1.2 follows

from

Proposition 4.4. If zero is a regular point of H and |V (x)| ≲ ⟨x⟩−β for some β > n+ 4, then

sup
x,y∈Rn

∣∣∣∣ ∫ ∞

0

eitλ
2α

λ2α−1χ(λ)[R+
V −R−

V ](λ
2α)(x, y) dλ

∣∣∣∣ ≲ |t|− n
2α .

We first establish bounds on M−1
± (λ) and its derivatives.

Lemma 4.5. For sufficiently small λ0, if |V (x)| ≲ ⟨x⟩−β for some β > n and zero is regular, then

the operators M±(λ) are invertible on L2. Furthermore,∥∥∥∥ sup
0<λ<λ0

|M−1
± (λ)|+ λ|∂λM−1

± (λ)|+ λ2|∂2λM−1
± (λ)|

∥∥∥∥
L2→L2

<∞.

In addition, if β > n+ 4,∥∥∥∥ sup
0<λ<λ0

2∑
k=0

λ2α−n+k|∂kλ[M−1
+ −M−1

− ](λ)|
∥∥∥∥
L2→L2

<∞.

Proof. From Proposition 2.2, we write

M+(λ) = U + vR+
0 (0)v + E(λ), E(λ) = O(λn−2α|v|(x)|v|(y)).

If |V (x)| ≲ ⟨x⟩−β for β > n, we have

sup
0<λ<λ0

|E(λ)| ≲ λn−2α
0 ⟨x⟩−n

2 −⟨y⟩−n
2 −,

which is bounded on L2. T−1
0 is absolutely bounded by the same argument in Lemma 3.5.
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So, the claim follows by a Neumann series expansion for sufficiently small λ0. For the derivative,

we use the resolvent identity to write

∂λM
−1
+ (λ) =M−1

+ (λ)v∂λR+
0 (λ

2α)vM−1
+ (λ).

We note that, by Proposition 2.2 we have (for k ≤ 2)

λk|∂kλR+
0 (λ

2α)(x, y)| ≲ (1 + λ|x − y|)k ⟨λ|x− y|⟩n+1
2 −2α

|x− y|n−2α
≲

1

|x− y|n−2α
+ |x − y|

5−n
2 .

The last bound is seen by considering the cases of λ|x− y| < 1 and λ|x− y| ≥ 1 separately. Then, for

k ≤ 2

sup
0<λ<λ0

λk|∂kλ[vR+
0 (λ

2α)v](x, y)|

is bounded on L2 provided β > 5.

The second claim follows from the resolvent identity:

[M−1
+ −M−1

− ](λ) = −M−1
+ (λ)v[R+

0 (λ
2α)−R−

0 (λ
2α)]vM−1

− (λ)

= −λn−2αM−1
+ (λ)v[eiλrF+(λr) + e−iλrF−(λr)]vM

−1
− (λ)

The claim now follows as above from (3) and the bounds on M−1
± .

□

We are now ready to proof Proposition 4.4 and hence Theorem 1.2.

Proof of Proposition 4.4. As before, using the symmetric resolvent identity (12) it suffices to control

the contribution of R−
0 (λ

2α)vM−1
+ (λ)v[R+

0 (λ
2α)−R−

0 (λ
2α)] and R−

0 (λ
2α)v[M−1

+ −M−1
− ](λ)vR+

0 (λ
2α)

to the Stone’s formula. In both cases we consider an operator Γ(λ) of the form where

Γ̃ := sup
0<λ<λ0

(|Γ(λ)|+ λ|∂λΓ(λ)|+ λ2|∂2λΓ(λ)|)

is bounded on L2. By Lemma 4.5 both M−1
+ (λ) and λ2α−n[M−1

+ −M−1
− ](λ) satisfy this bound.

By Proposition 2.2 and the definition of Γ(λ) above, we need to control

(18)

∫ 1

0

eitλ
2α+iλ(|x|∓|y|)λn−1χ(λ)ax,y(λ) dλ,

where (with r1 = |x− z1| and r2 = |z2 − y|)

(19) ax,y(λ) = χ(λ)

∫
R2n

eiλ(r1−|x|±(r2−|y|))F (λr1)

rn−2α
1

[vΓ(λ)v](z1, z2)

(
F (λr2)

rn−2α
2

+ F±(λr2)

)
dz1 dz2.

Note that, using |F (·)|, |F±(·)| ≲ 1, we have

|ax,y(λ)| ≲
∥∥∥∥ v(·)
|x− ·|n−2α

∥∥∥∥
L2

∥Γ̃∥L2→L2

∥∥∥∥v(·)(1 + 1

| · −y|n−2α

)∥∥∥∥
L2

≲ 1,
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uniformly in x, y ∈ Rn. This suffices for the case of |t| ≲ 1. Further, by Proposition 2.1, Lemma 4.5,

and the definition of Γ̃ above, we have

(20)
∣∣∂jλax,y(λ)∣∣ ≲ λ−j , j = 0, 1, 2.

We now turn to the large time decay, when |t| ≫ 1 we break up the λ integral into two pieces. When

0 < λ < |t|− 1
2α we bound by ∫ |t|−

1
2α

0

λn−1 dλ ≲ |t|− n
2α .

We now consider the remaining portion, first when |λ(|x| ∓ |y|)| ≲ 1. By (20) and the assumption

that |λ(|x| ∓ |y|)| ≲ 1, we have∣∣∂jλ[eiλ(|x|∓|y|)ax,y(λ)
]∣∣ ≲ λ−j , j = 0, 1, 2.

We integrate by parts against eitλ
2α

twice to bound by

(21)
1

|t|2

∫ 1

|t|−
1
2α

λn−1−4α dλ ≲ |t|− n
2α ,

where we used that n− 1− 4α < −1.

Now we consider when |λ(|x| ∓ |y|)| ≫ 1, where the phase has a critical point at λ0 =

(−(|x|∓|y|)
2αt )

1
2α−1 . We first consider when λ ̸∼ λ0. Here we integrate by parts twice using that

|∂jλax,y(λ)| ≲ λ−j , we may bound by

1

|t|2

∫ 1

|t|−
1
2α

∣∣∣∣∂λ( 1

ϕ′(λ)
∂λ

(
λn−1

ϕ′(λ)
ax,y(λ)

))∣∣∣∣ dλ.
Since λ ̸∼ λ0 we have that |ϕ′(λ)| ≳ λ2α−1 and this is dominated by (21).

When λ ∼ λ0 ≲ 1, we have |t| ≳ | |x| ∓ |y| |. We integrate by parts once against eitλ
2α

to bound by

(and denoting R := |x| ∓ |y|)

1

2αit

∫
λ∼λ0

eitλ
2α

∂λ

(
λn−2αeiλRax,y(λ)

)
dλ

=
1

2αit

∫
λ∼λ0

eitϕ(λ)∂λ

(
λn−2αax,y(λ)

)
dλ+

iR

2αit

∫
λ∼λ0

eitϕ(λ)λn−2αax,y(λ) dλ

We will use that (considering cases of |x| < |y| and |y| < |x|)

(22) |∂jλax,y(λ)| ≲ λ−j(λ⟨x⟩+ λ⟨y⟩) 1
2−

n
2α

to apply Van der Corput to bound by

λ1−α
0

|t| 32

(∫
λ∼λ0

|∂2λ(λn−2αax,y(λ))| dλ+ |R|
∫
λ∼λ0

|∂λ(λn−2αax,y(λ)| dλ
)

≲ (λ0⟨x⟩+ λ0⟨y⟩)
1
2−

n
2α

(
λ1−α
0

|t| 32
λn−1−2α
0 +

|R|λ1−α
0

|t| 32
λn−2α
0

)
≲ (⟨x⟩+ ⟨y⟩) 1

2−
n
2α

|R|λ(
n
2α− 3

2 )(2α−1)
0

|t| 32
,
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using that λ|R| ≫ 1 in the last inequality. Using that λ2α−1
0 ∼ |R|

|t| , we may bound by

(⟨x⟩+ ⟨y⟩) 1
2−

n
2α

|R|( n
2α− 1

2 )

|t| n
2α

≲ |t|− n
2α ,

uniformly in x, y.

The bounds in (22) follow from Proposition 2.1, Lemma 4.5, noting that n
2α − 1

2 ≤ n−1
2 .

□

5. Spectral characterization

We have defined zero energy to be regular if the operator T0 = U + vG0v is invertible on L2 where

G0 is the kernel of [(−∆)α]−1, which is a multiple of |x − y|2α−n. Further, S1 is the projection onto

the kernel of T0. We note that S1 is finite rank since vG0v is compact. As usual, we wish to relate

the concept of regularity at zero to distributional solutions to [(−∆)α + V ]ψ = 0.

We must consider cases based on the relative sizes of α and n. We consider small n first.

Lemma 5.1. In dimensions n ≥ 2, fix n
4 ≤ α < n

2 and assume that |V (x)| ≲ ⟨x⟩−β for some β > 2α.

Then ϕ ∈ S1L
2(Rn) if and only if ϕ = Uvψ for some ψ ∈ L2,−α−(Rn) with [(−∆)α + V ]ψ = 0 in the

sense of distributions. Furthermore, ψ ∈ L∞(Rn).

Proof. We first assume that ϕ ∈ S1L
2(Rn), then using U2 = I we have

(U + vG0v)ϕ = 0, ⇒ ϕ = −UvG0vϕ.

We define ψ = −G0vϕ, which implies ϕ = Uvψ. In particular, this shows that ψ = −G0V ψ hence

[I +G0V ]ψ = 0, which is equivalent to [(−∆)α + V ]ψ = 0 in the sense of distributions. We now show

that ψ ∈ L2,−α−. By definition we have

ψ(x) = −G0vϕ(x) = −cn,α
∫
Rn

v(y)ϕ(y)

|x− y|n−α
dy.

In particular, G0 is a scalar multiple of the fractional integral operator I2α. By Lemma 2.3 in [29],

we have that I2α : L2,s → L2,−s′ provided that s, s′ > 2α− n
2 and s+ s′ > 2α. Since ϕ ∈ L2, we have

that vϕ ∈ L2, β2 , since α < n
2 we have 2α− n

2 < α, and hence β
2 > 2α− n

2 . This implies G0vϕ ∈ L2,−s′

for some s′ > 2α − n
2 , and since α < n

2 we may select s′ = α+ and conclude that ψ ∈ L2,−α− as

desired provided that β > 2α.

Now, assuming that ψ ∈ L2,−α− satisfies [(−∆)α + V ]ψ = 0 in the sense of distributions, and let

ϕ = Uvψ. Then,

(U + vG0v)ϕ = vψ + vG0V ψ = v[I +G0V ]ψ = 0.

Hence ϕ ∈ S1L
2(Rn).
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Now, to show that ψ ∈ L∞ we first consider when n
4 < α < n

2 , then 0 < n − 2α < n
2 , so that

G0(x, y) is a locally L2 function of y uniformly in x. Further, under the decay conditions we have

|ψ(x)| ≲
∫
Rn

|G0(x, y)V (y)| |ψ(y)| dy ≲ ∥G0(x, ·)V (·)∥2∥ψ∥2

uniformly in y, hence ψ ∈ L∞ as claimed.

When α = n
4 , one needs to iterate the resolvent identity once since n − 2α = n

2 in this case. We

write ψ(x) = G0V G0V ψ(x) and use Lemma 6.3 in [15] to see that

|G0V G0(x, y)| ≲
∫
Rn

⟨z⟩−β

|x− z|n−2α|z − y|n−2α
dz ≲ ⟨x− y⟩2α−n(|x− y|0+ + |x− y|0−)

since n+ β − 4α > n− 2α. It is clear that (G0V )2(x, y) is in L2 uniformly in x and the claim follows

again by Cauchy-Schwartz.

□

Heuristically, this allows for the possibility of zero energy resonances when 2α < n ≤ 4α. When n >

4α, we expect that no threshold resonances may exist. For decaying potentials, this is a consequence

of the following.

Lemma 5.2. In dimensions n > 2, fix 0 < α < n
4 and assume that |V (x)| ≲ ⟨x⟩−β for some β > 4α.

Then ϕ ∈ S1L
2(Rn) if and only if ϕ = Uvψ for some ψ ∈ L2(Rn) with [(−∆)α+V ]ψ = 0 in the sense

of distributions. Furthermore, ψ ∈ L∞(Rn).

Proof. As in the previous proof, if ϕ ∈ S1L
2(Rn) then ψ = −G0vϕ is a distributional solution of

Hψ = 0. Since n > 4α, by Lemma 2.3 in [29] the operator I2α : L2,s → L2 provided s > 2α. Hence,

ψ = −G0vϕ ∈ L2 provided β > 4α.

The claim that ψ ∈ L∞ follows by iterating the identity ψ = −G0V ψ to write ψ = [−G0V ]kψ for

a sufficiently large k depending on n and α. Then, using Lemma 6.3 in [15] one has

|G0V G0(x, y)| ≲
∫
Rn

⟨z⟩−β

|x− z|n−2α|z − y|n−2α
dz ≲

 ( 1
|x−y| )

max(0,n−4α) |x− y| ≤ 1

( 1
|x−y| )

min(n−2α,n+β−4α) |x− y| > 1

As before, n+β−4α > n−2α, so one lessens the local singularity by a factor of 2α without diminishing

the decay for large |x− y| after applying G0V . More succinctly,

|G0V G0(x, y)| ≲
∫
Rn

⟨z⟩−β

|x− z|n−2α|z − y|n−2α
dz ≲

⟨x− y⟩2α−n+max(0,n−4α)

|x− y|max(0,n−4α)

One can iterate by noting that ⟨z1⟩−β⟨z1 − y⟩−γ ≲ ⟨z1⟩−(β+γ) + ⟨z1 − y⟩−(β+γ) so that

|(G0V )2G0(x, y)| ≲
∫
Rn

⟨z1⟩−β⟨z1 − y⟩2α−n+max(0,n−4α)

|x− z1|n−2α|z1 − y|max(0,n−4α)
dz1

≲
∫
Rn

⟨z1⟩−β+2α−n+max(0,n−4α)

|x− z1|n−2α|z1 − y|max(0,n−4α)
dz1 +

∫
Rn

⟨z1 − y⟩−β+2α−n+max(0,n−4α)

|x− z1|n−2α|z1 − y|max(0,n−4α)
dz1
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≲
⟨x− y⟩2α−n+max(0,n−6α)

|x− y|max(0,n−6α)
.

Where we apply Lemma 6.3 of [15] on each integral, using the change of variables z1 7→ z1 + y in the

second integral. Iterating k times, we arrive at

|(G0V )kG0(x, y)| ≲
⟨x− y⟩2α−n+max(0,n−(j+1)α)

|x− y|max(0,n−(k+1)α)
.

For k ≥ ⌈ n
2α⌉, one sees that (G0)

kG0(x, y) is an L
2 function of y uniformly in x. Hence for k > ⌈ n

2α⌉

|ψ(x)| = |(G0V )kG0ψ(x)| ≲
∫
Rn

|(G0V )kG0(x, y)| |ψ(y)| dy ≲ ∥(G0V )kG0(x, ·)∥2∥ψ∥2,

proving the claim.

□
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[14] M. B. Erdoğan, M. Goldberg, and W. R. Green, The Lp-continuity of wave operators for fractional order

Schrödinger operators, preprint 2025.
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