MA 323 Geometric Modelling HW Assignment \# 1

This assignment is due Thursday December 9th, 2004 by 5:00 pm. Please follow the homework guidelines available from the Guides and Useful Info Link at the Course Webpage.

1. Constructions in space.
(a) (Thought) Does the construction for a piecewise linear curve require the points to be in a plane? Can you construct a piecewise linear curve for spatial point? How?
(b) (Thought) Does the construction for a piecewise circular curve require the points to be in a plane? Can you construct a piecewise circular curve for spatial points? How?
2. (Computational) Consider the design problem: find a smooth closed curve that is tangent to each of the line segments in the figure below using seven biarcs. A Maple worksheet for creating a similar figure is on ANGEL. You should use the Maple code for creating biarcs demonstrated in class on Friday.

Figure 1: A Design Problem
3. (Algorithmic) Given points p_{0}, p_{1}, p_{2} and tangent lines l_{0} and l_{2} at p_{0} and p_{2} respectively. Construct a piecewise circular curve consisting of
(a) three arcs that passes through the given points and has the given tangent lines.
(b) four arcs that pass through the given points and has the given tangent lines.
4. Given the data in the table below

t	0.0	1.0	2.0	3.5	4.0
x	0.0	1.0	2.0	3.0	3.0
y	0.0	1.0	1.0	2.0	3.0

(a) Find the piecewise circular curve that interpolates the data using the trigonometric parameterization of a circle with initial tangent line being the y-axis.
(b) Find the parametric circle of the form $\left[x_{0}+r \cos (\omega t+\phi), y_{0}+r \sin (\omega t+\phi)\right]$ that best fits the data.
(c) Which model would say is the aesthetically a better curve? Why?

