
BUILDING MATHEMATICAL

STRUCTURES IN MINETEST, AN

OPEN-SOURCE VOXEL GAME

Kyle M. Claassen

Department of Mathematics

Rose-Hulman Institute of Technology

Terre Haute, IN 47803, USA

claassen@rose-hulman.edu

BUILDING MATHEMATICAL STRUCTURES IN

MINETEST, AN OPEN-SOURCE VOXEL GAME

Abstract: Minetest is a free, open-source voxel game similar to Minecraft in which players build

arbitrary structures by placing individual cubical blocks. Minetest has superior potential as an

educational tool in the classroom, and due to its easily accessible modding API, the game’s three-

dimensional world can be used a canvas for plotting mathematical curves, surfaces, and solids. This

is a fun and relatable way to empower students at various levels of maturity to (literally!) shape

their world with mathematics.

Keywords: visualization, educational technology, games, active learning, interactive plot-

ting, curves and surfaces, multivariable calculus, triple integrals, ODE systems, open source,

Minetest, Minecraft

Years ago when I was still in graduate school, my brother introduced me to Minecraft, a

popular commercial computer game in which players build arbitrary structures by placing

individual cubical blocks in a virtual three-dimensional world. During my first serious

encounter with this game, a few thoughts occurred to me:

1. This is taking too long.

Due to the low resolution of the blocky world, intricate structures must be rather large in

size, much like how a digital photograph looks “pixelated” unless the dimensions of the image

are large. It is very tedious and time-consuming to build gigantic structures by placing one

block at a time, and I am impatient.

2

2. It would be convenient to generate structures based on mathematical equations.

For example, a sphere is defined by a very simple equation, but it is rather difficult to

manually build one in the game. A “sphere” would need be large in order to adequately

approximate its curvature, and placing the blocks precisely would require very careful plan-

ning. It is easy to plot a sphere in common mathematics software, so why shouldn’t it be

similarly easy to plot a sphere (or any other mathematical curve or surface) in the game?

3. This would be fun to use in the classroom!

Rather than always producing plots with standard software (such as a computer algebra

system), it would be novel to demonstrate curves and surfaces as impressive Minecraft

structures. Moreover, many students would likely be familiar with the game already and

would appreciate the difficulty of building such structures. Who knows, they might even

embrace the relevant mathematics!

1 MINETEST: AN OPEN-SOURCE MINECRAFT ALTERNATIVE

Generating structures based on equations requires interacting with the world programmati-

cally. Though it is technically possible to create Minecraft “mods” that extend and modify

the gameplay, it is not especially inviting to do so; Minecraft modding is not officially sup-

ported, and I was intimidated by complexity of getting started. Before going down that

rabbit hole, I discovered that Minecraft is a specific example of a voxel game. (A “voxel” is

a higher-dimensional analog of a “pixel”, i.e. the discrete unit of space in a two-dimensional

image.) A survey of alternative voxel games led me to Minetest [1], a free/open-source voxel

game engine that features gameplay similar to that of Minecraft. Though Minetest is not

as well-known, it has greatly superior potential as an educational tool:

• Minetest is free to download and play.

• Minetest has modest hardware requirements and runs on many popular operating sys-

tems.

• Most importantly for me, Minetest is intentionally designed to be extended by

the open-source community.

Minetest gameplay can be extended via mods written in the Lua scripting language [3],

and developing Minetest mods is highly encouraged. Its API (Application Programming

Interface) for performing game operations programmatically has excellent documentation

for both beginners [8] and experts [2], and there is a central repository of open-source mods

[7] that one can refer to for inspiration and instruction. Moreover, one only needs a text

editor to write the code for a Minetest mod; there is no requirement to install special software

or engage in sophisticated software development processes, so it’s easy to get started even

if you only have a modest computer programming background.

Ultimately, I have developed MathPlot [4], a Minetest mod for interactively plotting

parametric and implicit curves/surfaces/solids, as well as solution trajectories for systems

of ordinary differential equations. In what follows, I will provide a high-level1 overview of

1A detailed discussion of how to use the various features of the MathPlot mod is beyond the scope of this

work, but more information about how to install and use the mod can be found on the MathPlot project

wiki [5].

3

Figure 1: MathPlot Origin Node

(a) An origin node that defines the location of

(x, y, z) = (0, 0, 0).
(b) A MathPlot origin node’s main menu.

MathPlot’s capabilities and how it can be used to empower students at various levels of

maturity to shape their world with mathematics.

2 PLOTTING CURVES AND SURFACES

The Minetest voxel world is a novel setting to explore many ideas that arise in multivariable

calculus, especially plotting curves and surfaces. In the voxel world, each block is a 1×1×1

cube whose location is specified in rectangular coordinates2. The MathPlot mod provides

functionality for plotting implicit surfaces defined by equations of the form f(x, y, z) = 0, as

well as curves/surfaces defined by parametric equations. The expressions are specified in the

syntax of the Lua programming language [3], which is very similar to standard line-based

input for calculators.

The MathPlot mod provides a block called an “Origin Node”, which defines the position

in the Minetest world that corresponds to (x, y, z) = (0, 0, 0) in the plots; see Figure 1a.

Punching an origin node displays a menu of the various operations that can be performed

(see Figure 1b). As an example, the ellipsoid defined by

(x
30

)2

+
(y

20

)2

+

(
z − 40

15

)2

− 1 = 0

on − 30 ≤ x ≤ 30, −20 ≤ y ≤ 20, 25 ≤ z ≤ 55

can be plotted using the Implicit Plot screen, which is used to plot points (x, y, z) that

satisfy an equation of the form f(x, y, z) = 0. The left-hand side of the equation is input

into the Relation field (the “= 0” is implied), the x-, y-, and z-ranges are specified, and

the type of block which will be used to draw the surface (the “plot node”) is chosen from

the player’s inventory; see Figure 2.

Parametric curves and surfaces can be plotted as well. For example, using the Parametric

2As is relatively common in computer graphics, the Minetest engine uses a left-handed coordinate system

in which the positive y-axis is in the upward direction. However, the MathPlot mod compensates so that,

by default, plots are performed in the usual right-handed coordinate system where the positive z-axis is in

the upward direction.

4

Figure 2: An ellipsoid created using the Implicit Plot screen.

Figure 3: A Trefoil Knot created using the Parametric Curve screen.

Curve screen, one can plot a Trefoil Knot [12] parametrized by

x(u) = 15 (sin(u) + 2 sin(2u))

y(u) = 15 (cos(u)− 2 cos(2u))

z(u) = 20− 15 sin(3u) on 0 ≤ u ≤ 2π,

which is shown in Figure 3. Similarly, using the Parametric Surface screen, one can plot

a large Möbius Strip [11] parametrized by

x(u, v) = 50 cos(u) + 10v cos(u) sin
(u

2

)
y(u, v) = 50 sin(u) + 10v sin(u) sin

(u
2

)
z(u, v) = 10v cos

(u
2

)
+ 20 on 0 ≤ u ≤ 2π, −1 ≤ v ≤ 1,

which is shown in Figure 4.

It is also possible to plot solution trajectories for systems of ordinary differential equa-

5

Figure 4: A Möbius Strip created using the Parametric Surface screen.

Figure 5: A Lorenz Attractor created using the ODE Plot screen.

tions using the ODE Plot screen (see Figure 5), such as a Lorenz Attractor [10]:

dx

dt
= 10y − 10x

dy

dt
= 28x− 1

3
xz − y

dz

dt
=

3

25
xy − 3z on 0 ≤ t ≤ 30 with x(0) = y(0) = 5, z(0) = 15.

Two-dimensional ODE systems in the xy-plane can be plotted by setting dz/dt = 0 and

using z(t0) = 0 in the initial data.

3 THE IMPORTANCE OF SCALING

All the examples that have been presented so far have one important thing in common:

they are big. This is necessary in order to see structural details due to the low resolution of

the voxel world, and equations that are more appropriate for plotting large objects can be

obtained by transforming typical “small-scale” equations that are commonly encountered

6

Figure 6: The plot for a sphere of radius 1 vs. the plot for a sphere of radius 50.

in mathematics classes. In particular, affine transformations of the form

x 7→ x− Tx
Sx

, y 7→ y − Ty
Sy

, z 7→ z − Tz
Sz

(1)

are especially useful, where a translation by (Tx, Ty, Tz) follows a scale change with fac-

tors Sx, Sy, and Sz. Such transformations are often taught at the precalculus level for

adjusting the dimensions and positions of function graphs and common implicit surfaces

such as spheres/ellipsoids, and Minetest provides an excellent setting (with a very practical

motivation!) for using these transformations.

Extremely simple examples reveal the need for rescalings. For instance, the resolution

of the world is insufficient to produce a nice plot of the unit sphere x2 + y2 + z2 − 1 = 0.

However, rescaling all axes by a factor of 40 and translating by 50 units in the positive

z-direction yields the equation(x
40

)2

+
(y

40

)2

+

(
z − 50

40

)2

− 1 = 0,

which produces a much more impressive plot (see Figure 6). Of course, one can apply (1)

to parametric equations, which transforms a parametric curve u 7→ (x(u), y(u), z(u)) into

u 7→ (Sx · x(u) + Tx, Sy · y(u) + Ty, Sz · z(u) + Tz). For example, in Figure 3, a uniform

scaling Sx = Sy = Sz = 15 and a vertical translation with Tz = 20 was applied to the

equations given in [12].

4 CLASSROOM USES

Hopefully you’re convinced that it would be a lot of fun for students (and instructors!)

to explore mathematical concepts using Minetest. For further inspiration, here are some

concrete examples of how I have used Minetest with the MathPlot mod in educational

settings.

4.1 Explaining Triple Integrals

All structures in the game consist of cubical blocks, which fosters the fundamental notion

that a solid region in R3 can be approximated by a union of small, discrete rectangular

7

Figure 7: Approximating the solid tetrahedron W using “small blocks”

(a) For visualization purposes, the volume of an

individual block can be regarded as “dV ”.
(b) The approximate tetrahedron, W .

prisms. Of course, this is exactly how I want my students to visualize regions of integration,

whose volume (or mass, etc.) can be computed as a summation of “small blocks”, each

having volume dV (see Figure 7a). That is,

Volume(W) =

∫∫∫
W

dV.

Computing such an integral explicitly usually requires an iterated integral, and Minetest is

an excellent environment for demonstrating the thought process behind setting up various

orders of integration!

When teaching Calculus III, my first example of a triple integral is to find the volume of

the solid tetrahedron W in the first octant bounded by the plane 2x+ y + z = 40 as shown

in Figure 7b3. One can build W by first selecting a specific point (x, y) in the “floor” at

z = 0, i.e. (x, y) ∈ {(x, y) : 0 ≤ x ≤ 20, 0 ≤ y ≤ 40− 2x}, then “stacking blocks vertically”

until reaching the “ceiling” at z = 40 − 2x − y. (See Figure 8a.) Keeping a running total

of the blocks’ volumes (i.e. the integral) yields the volume of W , and this process naturally

describes the following iterated integral:

Volume(W) =

∫ 20

x=0

∫ 40−2x

y=0︸ ︷︷ ︸
select a point (x, y)

on the floor...

∫ 40−2x−y

z=0︸ ︷︷ ︸
...then stack blocks vertically!

dz dy dx =
16000

3
cubic units.

Of course, one could compute the volume of W by a different iteration, e.g. building W

by first selecting a block on the “back wall” in the yz-plane, i.e. (y, z) ∈ {(y, z) : 0 ≤ y ≤
40, 0 ≤ z ≤ 40 − y}, then “stacking blocks forward” perpendicular to the yz-plane from

x = 0 to x = (40 − y − z)/2. (See Figure 8b.) This process describes a different iterated

3The walls of the tetrahedron can be built quickly using the Implicit Plot screen.

8

Figure 8: Columns of blocks

(a) A vertical column of blocks perpendicular

to the xy-plane, per the setup of an iterated

integral in the order dz dy dx or dz dx dy.

(b) A column of blocks perpendicular to the yz-

plane, per the setup of an iterated integral in the

order dx dy dz or dx dz dy.

integral, which of course yields the same volume:

Volume(W) =

∫ 40

y=0

∫ 40−y

z=0︸ ︷︷ ︸
select a point (y, z)
in the back wall...

∫ (40−y−z)/2

x=0︸ ︷︷ ︸
...then stack blocks forward!

dx dz dy =
16000

3
cubic units.

Indeed, based on direct student feedback (they love seeing Minetest in class), I have found

that showing the “physical” act of stacking blocks in Minetest helps make the process of

setting up iterated triple integrals much more tangible.

4.2 Prototyping with a Computer Algebra System

The equations for curves and surfaces can become complicated (and error-prone) very

quickly, so it can be beneficial to prototype the structures in a computer algebra system

before plotting them in Minetest. This is an excellent opportunity to practice using general-

purpose mathematics software, as the code/worksheet provides a convenient record of the

equations and parameter ranges used to generate the plots, which can then be transcribed

into Minetest. Moreover, mistakes in equations can cause accidental damage to other struc-

tures in your Minetest world, so it is helpful to confirm that multiple curves/surfaces fit to-

gether as expected before plotting them in the game. Also, it may be possible to copy/paste

complicated equations from the computer algebra system directly into Minetest with rela-

tively few modifications. Indeed, copy/paste compatibility with the Maple computer algebra

system is nearly perfect; one very rarely encounters errors when pasting Maple’s symbolic

output into the MathPlot equation fields.

To showcase the convenience of prototyping with a CAS in Calculus III, as an in-class

example I demonstrate how to plot and transform a Tanglecube [9], an implicit surface

9

defined by

f(x, y, z) := x4 + y4 + z4 − 5x2 − 5y2 − 5z2 + 12 = 0. (2)

It is difficult to visualize the Tanglecube surface based on (2), so it is helpful to use a

computer algebra system to plot it and experiment with various window ranges for x, y,

and z. Moreover, one can easily verify that (x, y, z) = (2,−2, 2) is on this surface and that

~n = ∇f(2,−2, 2) = 〈12,−12, 12〉 is a suitable normal vector to the surface at that point,

hence the tangent plane is given by 12(x−2)−12(y+2)+12(z−2) = 0. Of course, our goal

Figure 9: Prototyping a surface and its tangent plane in Maple, then plotting in Minetest

(a) It is quick to experiment with transformed

equations and plots in Maple through function

composition or substitutions.

(b) The prototyped plot in Maple.

(c) The transformed equation in Maple can be

directly copied and pasted into Minetest.
(d) The resulting plot in Minetest.

will be to plot the Tanglecube and its tangent plane in Minetest! As previously discussed,

the equations must be modified to scale and translate the plots so that they look good

in the game. The Tanglecube’s equation (2) has many instances of x, y, and z, hence it

can be tedious to manually implement and experiment with the transformations. However,

this is easy to do in a CAS such as Maple, and the resulting expression (which is much

more complicated) can be copied from Maple and pasted directly into the Relation field

10

Figure 10: A phase portrait created with the ODE Plot screen.

on the Implicit Plot screen. With some experimentation, one finds that stretching all

axes by a factor of 15 and translating the Tanglecube vertically by 50 units yields a nice

plot in Minetest on −50 ≤ x, y ≤ 50, 10 ≤ z ≤ 100. See Figure 9 for a comparison of the

prototyped plot in Maple and the corresponding plot in Minetest.

4.3 Drawing Phase Portraits of ODE Systems

In lieu of a computer algebra system, MathPlot can be used to create phase portraits

for two- and three-dimensional ODE systems. Again, due to the low-resolution world, a

transformation such as (1) must often be applied first. For example, the system

dx

dt
= 2x− 3x2 − 4xy,

dy

dt
= −y + 3xy

exhibits a variety solution trajectories in the window − 1
2 ≤ x ≤ 1, − 1

2 ≤ y ≤ 1. But, in

order for the trajectories to have sufficient detail in Minetest, the system should be scaled

by a relatively large factor, e.g. 80. Applying (1) with Sx = Sy = 80 and Tx = Ty = 0, the

differential equations become

dx

dt
= 2x− 3

80
x2 − 1

20
xy,

dy

dt
= −y +

3

80
xy on −40 ≤ x, y ≤ 80. (3)

Then a phase portrait of this system can be constructed with the ODE Plot screen using a

variety of initial data and dz/dt = 0, z(0) = 0. (See Figure 10.)

Indeed, the geometry of the game presents a need to apply scalings to equations, and this

skill transfers directly to applications such as non-dimensionalization. Moreover, the other

ploting capabilities of the MathPlot mod can be leveraged to explore further geometric

aspects of the system. For example, the non-trivial nullclines of (3), i.e. the non-trivial

curves along which dx/dt = 0 or dy/dt = 0, are (respectively)

2− 3

80
x− 1

20
y = 0 and − 1 +

3

80
x = 0,

and these curves can be plotted using the Implicit Plot screen. (They intersect at the

equilibrium point in the first quadrant.)

11

Figure 11: Sonia Kovalevsky Math Day activity at Rose-Hulman.

Participation in the event. Photo credit: Rose-

Hulman Institute of Technology / David Essex

The Observatory, built (mostly) using mathe-

matical equations!

4.4 Extracurricular Activities / Projects

In addition to the occasional class activity in Calculus III, I have also used Minetest with

the MathPlot mod for larger-scale activities and course projects.

4.4.1 Sonia Kovalevsky Math Day Activity

In February 2020, I conducted a Minetest activity for high school girls as part of the annual

Sonia Kovalevsky Math Day at the Rose-Hulman Institute of Technology [6]. Mathemat-

ically, this activity focused on the Pythagorean Theorem, its equivalence to the “distance

formula”, and how it is used to set up equations for cylinders and spheres in R3. The ulti-

mate goal of the activity was to use equations to build the cylindrical walls and hemispherical

dome of an “observatory” (see Figure 11).

4.4.2 Vector Calculus Project

In my Spring 2020 Vector Calculus course, I assigned a project in which students were

tasked with building an elevated swimming pool with a spiral staircase; see Figure 12a. In

advance of assigning the project, I set up an internet-accessible Minetest server with the

structure already built in it, and students could log in to explore what they were required

to emulate and inspect the dimensions more carefully. As part of the project instructions,

I also gave the students a cross-sectional schematic (see Figure 12b) to help identify the

important dimensions before diving into finding equations, etc. For their final submissions,

students uploaded the following to the LMS:

• A Maple file containing their prototyped equations and graphics.

• A zip file containing their Minetest world files so that I could verify and explore their

creations.

• A typed, narrative report documenting their process of finding the relevant equations,

prototyping the structure in Maple, and ultimately building it in the game.

In particular, the report was to include a graphic of the cross-sectional schematic with the

dimensions labeled appropriately, a screenshot of their prototyped plots in Maple, a table

12

Figure 12: Vector Calculus Project

(a) Required structure for the project. (b) Cross-sectional schematic of the structure.

(c) One student built a waterslide into the swim-

ming pool as their additional project item.

(d) Another student created a planet with rings

and a multi-layered core for their additional

project item.

13

Figure 13: Vector Calculus (MA330) Class Picture

(a) A student built a camera for the class picture

using the MathPlot mod.

(b) Students joined for a group build and class

picture (usernames redacted). This screenshot

was taken while standing on top of the camera!

containing the parametric equations for each part of the structure and the relevant ranges of

the parameters, and a screenshot of the finished structure in the game. Moreover, students

were required to build an additional curve, surface, or solid of their own design (which they

had proposed ahead of time for my approval), and I was very impressed by their creativity!

See Figures 12c-12d for a couple of my personal favorite submissions.

As mentioned previously, this Vector Calculus class took place during the infamous

Spring 2020 academic term, which was administered in an online modality due to the

COVID-19 pandemic. It was extremely challenging for everyone (especially me!), but we

ended this unprecedented and stressful term in a fun way–for the last day of class, we con-

nected to the project Minetest server for a group build and “class picture” (see Figure 13).

Having conducted this course mostly asynchronously, it felt good to leverage Minetest to

create something together.

Acknowledgments

I would like to thank my colleague and friend William Green (green@rose-hulman.edu)

for his helpful feedback and persistent encouragement to write this article.

Biographical Sketch

Kyle Claassen received his Ph.D. in mathematics from the Univeristy of Kansas and is

currently an assistant professor at the Rose-Hulman Institute of Technology. He enjoys

developing mathematical visualizations and is interested broadly in applied mathematics

and computer programming.

REFERENCES

[1] Ahola, P., et al. (2022). Minetest, Version 5.6.0. https://www.minetest.net/

[2] Ahola, P., et al. (2023). Minetest Lua modding API reference. https://github.com/

minetest/minetest/blob/master/doc/lua_api.txt

green@rose-hulman.edu
https://www.minetest.net/
https://github.com/minetest/minetest/blob/master/doc/lua_api.txt
https://github.com/minetest/minetest/blob/master/doc/lua_api.txt

14

[3] Ierusalimschy, R. (2003). Programming in Lua (first edition). https://www.lua.org/

pil/contents.html

[4] Claassen, K.M. (2021). MathPlot (Minetest mod), Version 2.1.2. https://content.

minetest.net/packages/kyleclaassen/mathplot/

[5] Claassen, K.M. (2021). MathPlot documentation. https://gitlab.com/

kyleclaassen/minetest_mathplot/-/wikis/home

[6] Rose-Hulman Institute of Technology. (2020). Sonia math day to show high school girls

the fun in math. https://www.rose-hulman.edu/news/2020/sonia-math-2020.html

[7] Ward, A. (2023). Minetest ContentDB. https://content.minetest.net/

[8] Ward, A. (2023). Minetest modding book. https://rubenwardy.com/minetest_

modding_book/en/index.html

[9] Weisstein, E.W. (2003). Tanglecube (from MathWorld–a Wolfram web resource).

https://mathworld.wolfram.com/Tanglecube.html

[10] Wikipedia. (2023). Lorenz system. https://en.wikipedia.org/wiki/Lorenz_system

[11] Wikipedia. (2023). Möbius strip. https://en.wikipedia.org/wiki/M%C3%B6bius_

strip

[12] Wikipedia. (2023). Trefoil knot. https://en.wikipedia.org/wiki/Trefoil_knot

https://www.lua.org/pil/contents.html
https://www.lua.org/pil/contents.html
https://content.minetest.net/packages/kyleclaassen/mathplot/
https://content.minetest.net/packages/kyleclaassen/mathplot/
https://gitlab.com/kyleclaassen/minetest_mathplot/-/wikis/home
https://gitlab.com/kyleclaassen/minetest_mathplot/-/wikis/home
https://www.rose-hulman.edu/news/2020/sonia-math-2020.html
https://content.minetest.net/
https://rubenwardy.com/minetest_modding_book/en/index.html
https://rubenwardy.com/minetest_modding_book/en/index.html
https://mathworld.wolfram.com/Tanglecube.html
https://en.wikipedia.org/wiki/Lorenz_system
https://en.wikipedia.org/wiki/M%C3%B6bius_strip
https://en.wikipedia.org/wiki/M%C3%B6bius_strip
https://en.wikipedia.org/wiki/Trefoil_knot

	MINETEST: AN OPEN-SOURCE MINECRAFT ALTERNATIVE
	PLOTTING CURVES AND SURFACES
	THE IMPORTANCE OF SCALING
	CLASSROOM USES
	Explaining Triple Integrals
	Prototyping with a Computer Algebra System
	Drawing Phase Portraits of ODE Systems
	Extracurricular Activities / Projects
	Sonia Kovalevsky Math Day Activity
	Vector Calculus Project

