Numerical Solutions and Direction Fields for Systems

Kurt Bryan and SIMIODE

A notebook to illustrate how to solve systems of ODEs numerically, and to draw a direction field for a pair of autonomous ODEs in Mathematica.

Example: Consider a pair of ODEs of the form $x 1^{\prime}(t)=f(t, x 1(t), x 2(t)), x 2^{\prime}(t)=g(t, x 1(t), x 2(t))$ where
$f\left[x 1_{-}, x 2_{-}\right]=x 1-x 2^{\wedge} 2$
$\mathrm{g}\left[\mathrm{x} 1_{-}, x 2_{-}\right]=\mathrm{x} 1$ * $\mathrm{x} 2+\mathrm{x} 1$
(in this example they are automous). And the ODEs themselves
de1 = $x 1^{\prime}[t]==f[x 1[t], x 2[t]]$
de2 = $x 2^{\prime}[t]==\mathrm{g}[\mathrm{x} 1[\mathrm{t}], \mathrm{x} 2[\mathrm{t}]]$
Numerical Solution: We can solve the system numerically with data $\mathrm{x} 1(0)=4, \mathrm{x} 2(0)=1$ on the interval $-2<t<2$, with the command
sol $=$ NDSolve[\{de1, de2, $x 1[0]==4, x 2[0]==1\},\{x 1, x 2\},\{t,-2,2\}]$
The solution at a given time t, say $t=1$, can be obtained with
x1[1] /. sol
x2[1] /. sol
The resulting solution components can be plotted for $-2<t<2$ using the邓
plt1 = Plot[Evaluate[x1[t] $/$.sol], \{t, -2, 2\}, PlotRange \rightarrow All, PlotStyle $\rightarrow\{$ Red $\}$;
plt2 $=$ Plot[Evaluate[x2[t]/. sol], \{t, -2, 2\}, PlotRange \rightarrow All, PlotStyle $\rightarrow\{B l u e\}] ;$
Show[plt1, plt2]
Or we can plot $(x 1(t), x 2(t))$ as a parametric curve:
$\ln [21]:=$
ParametricPlot [Evaluate $[\{x 1[t], x 2[t]\}] / . \operatorname{sol},\{t,-2,2\}$, PlotRange \rightarrow All]
The numerical solution procedure of NDSolve works on systems of any dimension, as does the plotting of solution components $\mathrm{xj}(\mathrm{t})$ versus t . Parametric plotting of solution curves works in 2 and 3 dimensions.

Direction Fields: If the ODEs are autonomous, we can sketch a direction field on the range $-5<x 1, x 2<$ 5 using the VectorPlot command, as
$2 \mid$
$\ln [22]:=\operatorname{VectorPlot}[\{f[x 1, x 2], g[x 1, x 2]\},\{x 1,-5,5\}$, $\{x 2,-5,5\}$, VectorColorFunction \rightarrow None, VectorStyle \rightarrow Red]

Below is the same plot but with representative solution curves:
in[23]:= $\operatorname{VectorPlot[\{ f[x1,~x2],~g[x1,~x2]\} ,~}\{x 1,-5,5\},\{x 2,-5,5\}$, VectorColorFunction \rightarrow None, VectorStyle \rightarrow Red, StreamPoints \rightarrow Coarse, VectorColorFunction \rightarrow None, StreamColorFunction \rightarrow None, StreamStyle \rightarrow Blue]

