Numerical Solutions and Direction Fields for Systems

Kurt Bryan and SIMIODE

A worksheet to illustrate how to solve systems of ODEs numerically, and to draw a direction field for a pair of autonomous ODEs in Maple.

Load in DEtools package, which contains the helpful DEplot command, and the plots package, which contains odeplot.
$>$ with(DEtools) :
with(plots) :
Example: A pair of ODEs:
$\begin{aligned}>d e 1 & :=x 1^{\prime}(t)=x 1(t)-x 2(t)^{2} ; \\ d e 2 & :=x 2^{\prime}(t)=x 1(t) \cdot x 2(t)+x 1(t)\end{aligned}$
Numerical Solution: We can solve the system numerically with initial data $\mathrm{x} 1(0)=4, \mathrm{x} 2(0)=1$, with the command
nsol $:=$ dsolve $(\{d e 1, d e 2, x 1(0)=4, x 2(0)=1\},\{x 1(t), x 2(t)\}$, numeric $)$
The solution at a given time t , say $\mathrm{t}=1$, can be obtained with
$n \operatorname{sol}(1)$
The resulting solution components can be plotted for $-2<\mathrm{t}<2$ using the odeplot command
$\operatorname{odeplot}(\operatorname{nsol},[[t, x 1(t)],[t, x 2(t)]],-2 . .2$, color $=[r e d, b l u e])$
EOr we can plot ($\mathrm{x} 1(\mathrm{t}), \mathrm{x} 2(\mathrm{t}))$ as a parametric curve:
$>\operatorname{odeplot}(\operatorname{nsol},[x 1(t), x 2(t)],-2 . .2)$
The numerical solution procedure of dsolve works on systems of any dimension, as does the plotting of solution components $\mathrm{xj}(\mathrm{t})$ versus t . Parametric plotting of solution curves works in 2 and 3 dimensions.

Direction Fields: If the ODEs are autonomous, we can sketch a direction field on a range $\mathrm{a}<\mathrm{x} 1<\mathrm{b}, \mathrm{c}$ $<\mathrm{x} 2<\mathrm{d}$, by using the DEplot command. We must supply a range for the independent variable " t ", even though that range is not explicitly used in drawing this direction field.
$[>\operatorname{DEplot}([\operatorname{de1}, d e 2],[x 1(t), x 2(t)], t=0 . .2, x 1=-5 . .5, x 2=-5 . .5)$
Below is the same plot but with solution curves that pass through the points $(\mathrm{x} 1, \mathrm{x} 2)=(4,1)$ and $(\mathrm{x} 1, \mathrm{x} 2)$
$=(3,-3)$, at time $\mathrm{t}=0$. The curves are sketched for $\mathrm{t}=0$ to $\mathrm{t}=2$ here.
$[>\operatorname{DEplot}([d e 1, d e 2],[x 1(t), x 2(t)], t=0 . .2, x 1=-5 . .5, x 2=-5 . .5,[[x 1(0)=4, x 2(0)=1]$, $[x 1(0)=3, x 2(0)=-3]]$, linecolor $=$ black $)$

