Competing Yeast Species

Kurt Bryan and SIMIODE

A script to facilitate analyzing the competing yeast species project in Section 7.5 .3 of the text. The goal is to use the data of Table 7.2 to estimate the parameters $\mathrm{r} 1, \mathrm{~K} 1, \mathrm{r} 2, \mathrm{~K} 2$, a , and b in equations (7.3)-(7.4).

The Data:

Time (hours) for yeast populations, run 1 (first 11 lines of Table 7.2).

```
times1 = [6, 16, 24, 29, 40, 48, 53, 72, 93, 117, 141];
```

And for run 2 (remaining 7 lines in Table 7.2)

```
times2 = [7.5, 15, 24, 31.5, 33, 44, 51.5];
```

Saccharomyces population, run 1 (column 2 in Table 7.2, with "-1" indicating "no data").

```
sacc1 = [0.37, 8.87, 10.66, 12.5, 13.27, 12.87, 12.70, -1, -1, -1, -1];
```

Saccharomyces population, run 2, (column 2, bottom 7 lines in Table 7.2)

```
sacc \(2=[1.63,6.2,10.97,12.60,12.9,12.77,12.9] ;\)
```

Schizosaccharomyces population run 1, (column 4 in Table 7.2, with "nd" for "no data").

```
schiz1 = [-1, 1, -1, 1.7, -1, 2.73, -1, 4.87, 5.67, 5.8, 5.83];
```

Schizosaccharomyces population run 2, (column 4, bottom 7 lines in Table 7.2)

```
schiz2 = [-1, 1.27, -1, 2.33, -1, -1, 4.56];
```

Saccharomyces population, run 1, mixed Sach/Schiz experiment (column 3, first 11 lines)

```
saccmix1 = [0.375, 3.99, 4.69, 6.15, -1, 7.27, 8.3, -1, -1, -1, -1];
```

Saccharomyces population, run 2, mixed Sach/Schiz experiment (column 3, bottom 7 lines)

```
saccmix2 = [0.923, 3.082, 5.78, 9.91, 9.47, 10.57, 9.883];
```

Schizosaccharomyces population run 1, mixed Sach/Schiz experiment (column 5, first 11 lines)

```
schizmix1 = [0.291, 0.98, 1.47, 1.46, -1, 1.71, 1.84, -1, -1, -1, -1];
```

Schizosaccharomyces population run 2, mixed Sach/Schiz experiment (column 5, bottom 7 lines)

```
schizmix2 = [0.371, 0.63, 1.22, 1.112, 1.225, 1.102, 0.961];
```

Let's form amalgamated data sets, by putting the runs together in (time, population) pairs

```
N1 = length(times1); N2 = length(times2); N0 = N1+N2;
times = [times1 times2];
```

```
saccind = zeros(2,N0);
saccind(1,:)=times; saccind(2,1:N1)=sacc1; saccind(2,N1+1:N0)=sacc2;
schizind = zeros(2,N0);
schizind(1,:)=times; schizind(2,1:N1)=schiz1; schizind(2,N1+1:N0)=schiz2;
saccmix = zeros(2,N0);
saccmix(1,:)=times; saccmix(2,1:N1)=saccmix1; saccmix(2,N1+1:N0)=saccmix2;
schizmix = zeros(2,N0);
schizmix(1,:)=times; schizmix(2,1:N1)=schizmix1; schizmix(2,N1+1:N0)=schizmix2;
```

We can plot the saccharomyces data with

```
scatter(saccind(1,:), saccind(2,:),'filled')
axis([0 [ 60 0 15])
```

The restriction of the axes prevents the "no data" -1 points from showing up.
A similar plot can be constructed for the schizosaccharomyces population in isolation, or either species in competition.

Estimate Growth Parameters for Saccharomyces: We can estimate the parameters r1 and K1 for the logistic growth model for the saccharomyces population using the corresponding data.

The logistic ODE is

```
syms u(t);
syms r1 K1;
logde = diff(u(t),t) == r1*u(t)*(1-u(t)/K1)
```

The initial data could be taken as any (time, population) data point, but we'll use the first:

```
t0 = saccind(1,1);
u0 = saccind(2,1);
```

Solve the logistic ODE with this data

```
u1sol(t) = dsolve(logde,u(t0)==u0)
```

A plot or even a glance at the data suggests that K1 is around 12 to 14 . To estimate K1 and r1 more carefully, form a sum of squares that ignores missing data.

```
syms SS;
SS = 0;
for j=1:N0
    if saccind(2,j)>0
        SS = SS + (u1sol(saccind(1,j))-saccind(2,j))^2;
    end
end
```

Minimize the sum of squares to obtain a best fit for r1 and K1, using Matlab's "fminsearch" command. Initial guess is $\mathrm{K} 1=12, \mathrm{r} 1=0.5$. We will use Matlab's fminsearch algorithm to seek the minimizer, after converting "SS" to a Matlab function "SSm":

```
SSm = matlabFunction(SS,'Vars',{[r1 K1]});
```

```
[optpars,fval] = fminsearch(SSm,[0.5 12.0])
```

Define the best-fit solution:

```
u1best(t) = subs(u1sol(t),[r1 K1],optpars);
```

Compare the plot and the data on an appropriate range (up to $t=60$ here).

```
scatter(saccind(1,:), saccind(2,:),'filled')
axis([0 60 0 15])
hold on
fplot(u1best(t),[0 60])
hold off
```

A similar procedure can be used to estimate $r 2$ and K2 for the schizosaccharomyces data, using (for example) the data point $\mathrm{t} 0=16, \mathrm{u} 0=1$ as an "initial" data point.

The Competition Parameters a and b: The ODEs that govern the competing species system are

```
syms u1(t) u2(t);
syms r2 K2 a b;
de1 = diff(u1(t),t) == r1*u1(t)*(1-u1(t)/K1-a*u2(t)/K1)
de2 = diff(u2(t),t) == r2*u2(t)*(1-u2(t)/K2-b*u1(t)/K2)
```

A closed-form solution cannot be obtained, but a guess-and-plot approach based on solving these ODEs numerically can work, using the values for r1, K1, r2, K2 found above.

