Homogeneous Linear Systems of ODEs in Mathematica

Kurt Bryan and SIMIODE

This notebook illustrates how to analyze homogeneous linear systems of ODEs in Mathematica．

Example System：Consider the homogeneous linear system of ODEs
de1＝$x 1^{\prime}[t]==x 1[t]+3 * x 2[t]$
de2＝$x 2^{\prime}[t]==3$＊$x[t]+x 2[t]$
for functions $x 1(t)$ and $x 2(t)$ ，with initial data $x 1(0)=2, x 2(0)=6$ ．

Solution via DSolve：The solution can be obtained with Mathematica＇s DSolve command：
$\ln [3]:=$
DSolve［\｛de1，de2，x1［0］＝＝2，x2［0］＝＝6\}, \{x1, x2\}, t]
Solution via Eigen－analysis：The system above is of the form $\mathbf{x}^{\prime}=\mathbf{A x}$ where $\mathrm{x}=<\mathrm{x} 1, \mathrm{x} 2>$ and
$A=\{\{1,3\},\{3,1\}\} ;$
A I／MatrixForm（＊Print A in standard matrix form＊）
We solve using the eigenvector／value analysis of Section 6．2．2．The eigenvalues and vectors of A can be computed as
$\ln [6]:=$ eigs $=$ Eigensystem［A］
The first part of＂eigs＂（the list $\{4,-2\}$ ）has as its components the eigenvalues of A ，that is，the eigenval－ ues are
$\ln [7]:=$ eigs $\llbracket 1,1 \rrbracket$
eigs【1，2】
The second part of＂eigs＂（the list representing a 2×2 matrix）has as its rows（not columns）the corre－ sponding eigenvectors of A ．Define a matrix \mathbf{P}
$P=$ Transpose［eigs【2】］；
P／／MatrixForm
as was done in equation（6．18）in the text．Let $\mathbf{x} \mathbf{0}$ denote the vector of initial conditions，
$\ln [11]:=x 0=\{2,6\}$
As per the procedure in Section 6．2．2，we can construct the solution to this ODE system by first solving $\mathbf{P c}=\mathbf{x 0}$ for \mathbf{c}, which in Mathematica takes the form
$\ln [12]:=$
$\ln [13]:=$

The solution（from（6．17））is then
$x s o l=c \llbracket 1 \rrbracket * E x p[e i g s \llbracket 1,1 \rrbracket * t] * P \llbracket A l l, 1 \rrbracket+c \llbracket 2 \rrbracket * E x p[e i g s \llbracket 1,2 \rrbracket * t] * P \llbracket A l l, 2 \rrbracket$
However，a real－valued version is obtained with
$c=$ LinearSolve［P，x0］
From（6．17）in the text the solution is then
$x s o l=c \llbracket 1 \rrbracket * E x p[e i g s \llbracket 1,1 \rrbracket * t] * P \llbracket A l l, 1 \rrbracket+c \llbracket 2 \rrbracket * E x p[e i g s \llbracket 1,2 \rrbracket * t] * P \llbracket A l l, 2 \rrbracket$
The notation＂P［［All，j］］＂picks off the jth column of the matrix P ．

The components of the solution $\mathrm{x} 1(\mathrm{t})$ and $\mathrm{x} 2(\mathrm{t})$ are then
xsol【1】
xsol【2】
Example 2：Consider the system
de1＝$x 1^{\prime}[t]==-5 * x 1[t]+6 * x 2[t]$
$\mathrm{de} 2=\mathrm{x} 2^{\prime}[\mathrm{t}]=-3$＊ $\mathrm{x} 1[\mathrm{t}]+\mathrm{x} 2[\mathrm{t}]$
with initial data $\mathrm{x} 1(0)=1, \mathrm{x} 2(0)=2$ ．This system is governed by the matrix
$A=\{\{-5,6\},\{-3,1\}\}$
A I／MatrixForm
Compute the eigenvalues／vectors as
eigs＝Eigensystem［A］
Following the analysis in the previous example，pick off the eigenvectors and install them in a matrix \mathbf{P} （as the columns of \mathbf{P} ，not the rows，hence a transpose is needed）
$P=$ Transpose［eigs【2】］
P I／MatrixForm
In the general solution（6．17）in the text，the desired initial conditions are obtained by taking the $c[k]$ as the components of the vector c that satisfies $\mathrm{Pc}=\mathrm{x} 0$ where $\mathrm{x} 0=<1,2>$（equation（6．18））．Compute
$c=$ LinearSolve $[P,\{1,2\}]$
xsolreal＝ComplexExpand［xsol］

