Homogeneous Linear Systems of ODEs in Matlab

Kurt Bryan and SIMIODE

This script illustrates how to analyze homogeneous linear systems of ODEs in Matlab.
Example System: Consider the homogeneous linear system of ODEs

```
syms x1(t) x2(t); %Declare functions
de1 = diff(x1(t),t) == x1(t) + 3*x2(t)
de2 = diff(x2(t),t) == 3*x1(t) + x2(t)
```

for functions $x 1(t)$ and $x 2(t)$, with initial data $x 1(0)=2, x 2(0)=6$.
Solution via dsolve: The solution can be obtained with Matlab's dsolve command:

```
sol = dsolve([de1, de2],[x1(0)==2,x2(0)==6]);
x1sol(t) = sol.x1
x2sol(t) = sol.x2
```

Solution via Eigen-analysis: The system above is of the form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{x}=<x 1, x 2>$ and

```
A = sym([1 3;3 1]); %Here "A" is a symbolic matrix. We could also take A = [1 3;3 1] in which
```

We solve using the eigenvector/value analysis of Section 6.2.2. The eigenvalues and vectors of A can be computed as

$$
[P, D]=\operatorname{eig}(A)
$$

The columns of P are the eigenvectors and D is a diagonal matrix whose diagonal consists of the corresponding eigenvalues.

To construct a solution with the desired initial data, let

$$
x 0=\operatorname{sym}([2 ; 6])
$$

be a symbolic column vector with the desired initial data. As per the procedure in Section 6.2.2, we can construct the solution to this ODE system by first solving $\mathbf{P c}=\mathbf{x 0}$ for \mathbf{c}, which in Matlab takes the form

$$
c=P \backslash x 0
$$

From (6.17) in the text the solution is then

```
xgen(t) = c(1)*exp(D(1,1)*t)*P(:,1) +c(2)*exp(D(2, 2)*t)*P(:, 2)
```

Example 2: Consider the system

```
syms x1(t) x2(t); %Declare functions
de1 = diff(x1(t),t) == -5*x1(t) + 6*x2(t)
de2 = diff(x2(t),t) == -3*x1(t) + x2(t)
```

with initial data $\times 1(0)=1, x 2(0)=2$. This system is governed by the matrix

$$
A=\operatorname{sym}\left(\left[\begin{array}{lll}
-5 & 6 ;-3 & 1
\end{array}\right]\right)
$$

Compute the eigenvalues/vectors as

$$
[P, D]=\operatorname{eig}(A)
$$

Following the analysis in the previous example and using the general solution (6.17) in the text, the desired initial conditions are obtained by taking the $\mathrm{c}[\mathrm{k}]$ as the components of the vector c that satisfies $\mathbf{P c}=\mathbf{x 0}$ where $\mathbf{x 0}=<1,2>$ (equation (6.18)). Compute

```
x0 = sym([1;2]);
c = P\x0
xgen(t) = c(1)*exp(D(1,1)*t)*P(:,1) + c(2)*exp(D(2,2)*t)*P(:,2)
```

We can obtain a real-valued solution (and we know the solution is real-valued) by telling Matlab to assume tis real with "syms t real" and then picking off the real part of $x g e n(t)$:

```
syms t real;
real(expand(xgen(t)))
```

