Homogeneous Linear Systems of ODEs in Maple

Kurt Bryan and SIMIODE

This worksheet illustrates how to analyze homogeneous linear systems of ODEs in Maple.
First, load in the "plots" and "LinearAlgebra" package
$>$ with(plots):
with(LinearAlgebra) :
Example System: Consider the homogeneous linear system of ODEs
$>d e 1:=x l^{\prime}(t)=x 1(t)+3 \cdot x 2(t)$;
$d e 2:=x 2^{\prime}(t)=3 \cdot x 1(t)+x 2(t)$
for functions $\mathrm{x} 1(\mathrm{t})$ and $\mathrm{x} 2(\mathrm{t})$, with initial data $\mathrm{x} 1(0)=2$, $\mathrm{x} 2(0)=6$.
SSolution via dsolve: The solution can be obtained with Maple's dsolve command:
$[>$ sol $:=\operatorname{dsolve}(\{d e 1, \operatorname{de2}, x 1(0)=2, x 2(0)=6\},\{x 1(t), x 2(t)\})$
Solution via Eigen-analysis: The system above is of the form $\mathbf{x}^{\prime}=\mathbf{A x}$ where $\mathbf{x}=<\mathrm{x} 1, \mathrm{x} 2>$ and [> $A:=\operatorname{Matrix}([[1,3],[3,1]])$
We solve using the eigenvector/value analysis of Section 6.2.2. The eigenvalues and vectors of A can be computed as
>> eigs $:=$ Eigenvectors (A)
The first part of "eigs" (the column vector $<4,-2>$) has as its components the eigenvalues of A , that is, the eigenvalues are
[> eigs[1][1], eigs[1][2]
The second part of "eigs" (the 2×2 matrix) has as its columns the corresponding eigenvectors of A .
Define a matrix \mathbf{P}
[> $P:=e i g s[2]$
Las was done in equation (6.18) in the text. Let
$[\rangle x 0:=\langle 2,6\rangle$
denote the initial condition vector. As per the procedure in Section 6.2.2, we can construct the solution
to this ODE system by first solving $\mathbf{P c}=\mathbf{x} \mathbf{0}$ for \mathbf{c}, which in Maple takes the form
$>c:=\operatorname{LinearSolve}(P, x 0)$
[From (6.17) in the text the solution is then
$[>$ xsol $:=c[1] \cdot \exp (e i g s[1][1] \cdot t) \cdot \operatorname{Column}(P, 1)+c[2] \cdot \exp (e i g s[1][2] \cdot t) \cdot \operatorname{Column}(P, 2)$
The command "Column (P, j) " picks off the j th column of a matrix " P ".
The components $\mathrm{x} 1(\mathrm{t})$ and $\mathrm{x} 2(\mathrm{t})$ are given by
[> xsol[1]; $x \operatorname{sol}[2] ;$
Example 2: Consider the system
$>d e l:=x l^{\prime}(t)=-5 \cdot x 1(t)+6 \cdot x 2(t)$;
$d e 2:=x 2^{\prime}(t)=-3 \cdot x 1(t)+x 2(t) ;$
[with initial data $\mathrm{x} 1(0)=1, \mathrm{x} 2(0)=2$. This system is governed by the matrix
$A:=\operatorname{Matrix}([[-5,6],[-3,1]])$
[Compute the eigenvalues/vectors as
>> eigs $:=$ Eigenvectors (A)
Following the analysis in the previous example, pick off the eigenvectors and install them in a matrix
$\lfloor\mathbf{P}$ as
$\lceil>P:=e i g s[2]$
In the general solution (6.17) in the text, the desired initial conditions are obtained by taking the $\mathrm{c}[\mathrm{k}]$ as the components of the vector \mathbf{c} that satisfies $\mathbf{P c}=\mathbf{x} \mathbf{0}$ where $\mathbf{x} \mathbf{0}=<1,2>$ (equation (6.18)). Compute
$[>c:=\operatorname{LinearSolve}(P,\langle 1,2\rangle)$
The solution (from (6.17)) is then
$[>x s o l:=c[1] \cdot \exp ($ eigs $[1][1] \cdot t) \cdot \operatorname{Column}(P, 1)+c[2] \cdot \exp (e i g s[1][2] \cdot t) \cdot \operatorname{Column}(P, 2)$
However, a real-valued version is obtained with
$\stackrel{\square}{>}$ evalc $(x s o l)$

