Solving Linear Systems with the Laplace Transform

Kurt Bryan and SIMIODE

This worksheet illustrates using the Laplace transform to solve linear system of ODEs (and also just using Matlab's dsolve command).

Consider the linear constant-coefficient nonhomogeneous system

```
syms x1(t) x2(t); %Declare functions
de1 = diff(x1(t),t) == -5*x1(t) + 6*x2(t)-2*sin(t)+10*cos(t)-6*exp(t)
de2 = diff(x2(t),t) == -3*x1(t) + x2(t)+6* cos(t)
```

with initial data $\times 1(0)=2$ and $\times 2(0)=1$.
To solve, Laplace transform both sides of both equations

```
syms s;
de1lap = laplace(de1, t, s);
de2lap = laplace(de2, t, s);
```

Substitute in the initial conditions, and (for convenience) let $\mathrm{X} 1=\operatorname{laplace}(\mathrm{x} 1(\mathrm{t}), \mathrm{t}, \mathrm{s})$ and $\mathrm{X} 2=\operatorname{laplace}(\mathrm{x} 2(\mathrm{t}), \mathrm{t}, \mathrm{s})$:

```
syms X1 X2;
de1lap2 = subs(de1lap,[x1(0), x2(0), laplace(x1(t),t, s), laplace(x2(t),t, s)],[2,1,X1,X2])
de2lap2 = subs(de2lap,[x1(0),x2(0),laplace(x1(t),t,s),laplace(x2(t),t,s)],[2,1,X1,X2])
```

Solve for the transforms X1 and X2

```
Xsols = solve([de1lap2,de2lap2],[X1,X2])
```

Let X1sol and X2sol denote the transforms

```
X1sol = Xsols.X1
X2sol = Xsols.X2
```

Inverse transform to find the solutions

```
x1sol(t) = ilaplace(X1sol,s,t)
x2sol(t) = ilaplace(X2sol,s,t)
```

A quick check using the dsolve command:

```
sol = dsolve([de1, de2],[x1(0)==2,x2(0)==1]);
sol.x1
sol.x2
```

