PID Control Example

Kurt Bryan and SIMIODE

A worksheet to illustrate the incubator P/PI/PID control computations for Section 5.6.

_First load in "inttrans" and "plots" packages.

> restart;

with(inttrans) :
with(plots) :

System/Plant Model: The uncontrolled incubator temperature is governed by the Newton cooling ODE

 $y'(t) = -k^*(y(t) - a(t))$ where "k" is the cooling constant and "a(t)" is ambient temperature. We let us take, for the moment,

> k := 0.05;

 $a(t) \coloneqq 0;$

The control function will be u(t), and the constant "K" in the controlled ODE (equation (5.108) in the text) will be K = 1. The controlled ODE is thus

> K := 1;

controlled_ODE := $y'(t) = -k \cdot (y(t) - a(t)) + K \cdot u(t)$

The desired temperature (setpoint) will be 0 degrees for t < 20 and then 3 degrees for t > 20.

> $r(t) := 3 \cdot \text{Heaviside}(t - 20);$

Assume the initial condition is y(0) = y0 with

 \rightarrow y0 := 5;

The Control: Choose the control gains for PID control. In this case we will use PI control (so Kd = 0):

>
$$Kp := 1; #Proportional gain$$

 $Ki := \frac{1}{10}; #Integral gain$

$$Kd := 0; #Derivative gain$$

The plant transfer function Gp(s) and controller transfer Gc(s) are, from (5.111) and (5.129) respectively,

>
$$Gp(s) := \frac{K}{s+k} : Gp(s);$$

 $Gc(s) := Kp + \frac{Ki}{s} + Kd \cdot s : Gc(s)$

From (5.118) the closed-loop transfer function is

>
$$G0 := simplify\left(\frac{Gp(s) \cdot Gc(s)}{1 + Gp(s) \cdot Gc(s)}\right)$$
:
 $G := unapply(G0, s)$

The System Response to a Disturbance: This system starts off at the wrong temperature (5 degrees instead of the desired setpoint 0) and there is a disturbance in the form of an abrupt setpoint change at time t = 20.

The governing ODE is $y'(t) = -k(y(t) - a(t)) + K^*u(t)$ where u(t) = r(t) - y(t). According to equation (5.133) the system response in the s domain can be computed as $Y(s) = G(s)^*R(s) + y0^*Gp(s)/(1+Gp(s) - Gg(s))$. Using Maple:

>
$$R := laplace(r(t), t, s);$$

 $Y := simplify \left(G(s) \cdot R + \frac{y \theta \cdot Gp(s)}{1 + Gp(s) \cdot Gc(s)} \right)$

The time domain response is then

ysol := convert(invlaplace(Y, s, t), exp) #Put in terms of exp instead of cosh or sinhA plot

[plot([r(t), ysol], t=0..100, color = [red, blue])]

Note the system starts off at 5 degrees (where the desired setpoint is zero), so the control cools the system to 0 degrees, with a bit of overshoot. The controller effectively responds to the change in the setpoint at time t = 20.