Laplace Transforms in Matlab

Kurt Bryan and SIMIODE

The Laplace Transform: To Laplace transform a function, e.g., $f(\mathrm{t})=\mathrm{t}^{\wedge} 2$, execute

```
syms s;
syms t;
laplace(t^2,t,s)
```

More generally, to compute the Laplace transform of $f(t)$ execute "laplace $(f(t), t, s)$ ". The second argument " t " indicates the independent variable in $f(t)$ and the third argument " s " indicates that the transform should have independent variable "s".

The Inverse Laplace Transform: The command is "ilaplace", e.g.,

```
ilaplace(2/s^3,s,t)
```

Example: Solving a first-order ODE: Consider the ODE $u^{\prime}(t)=-2^{*} u(t)+t$ with initial data $u(0)=3$.
Step 1: To solve using Laplace transforms (explicitly carrying out all the steps), first define the ODE

```
syms u(t);
ode \(=\operatorname{diff}(u(t), t)==-2 * u(t)+t\)
```

Step 2: Laplace transform both sides of the ODE, which can be done as

```
lapode = laplace(ode,t,s)
```

Matlab transformed both sides of the ODE, and knows the rule for transforming derivatives. Matlab uses the notation "laplace $(u(t), t, s)$ " for the Laplace transform of $u(t)$. Let use replace this with the notation $\mathrm{U}(\mathrm{s})$ (not necessary, just more aesthetically pleasing) and also substitute in the initial data $u(0)=3$.

```
syms U;
lapode2 = subs(lapode,[u(0),laplace(u(t),t,s)],[3,U])
```

Step 3: We can now solve for $\mathrm{U}(\mathrm{s})$, e.g.,

```
Usol = solve(lapode2,U)
```

Step 4: The last step is to inverse Laplace transform "Usol" to find $u(t)$, which we do as

```
usol(t) = ilaplace(Usol,s,t)
```

This is the solution to the ODE. As a quick check,

```
dsolve(ode,[u(0)==3])
```

Example: A second-order ODE. Consider the second-order ODE

```
ode = diff(u(t),t,2) + 4* diff(u(t),t) + 3*u(t) == sin(t)
```

with $u(0)=1$ and $u^{\prime}(0)=2$. To solve follows the steps below.
Step 1: Laplace transform both sided of the ODE

```
lapode = laplace(ode,t,s)
```

Step 2: Substitute in the initial data and (optionally) use $U(s)$ to replace "laplace $(u(t), t, s)$ ": Note that $u^{\prime}(0)$ is denoted by "subs(diff(u(t),t),t,0)" by Matlab.

Du $=\operatorname{diff}(u)$;
lapode2 $=$ subs(lapode,[u(0), Du(0), laplace(u(t),t,s)],[1,2,U])
Step 3: Solve for U(s) as

```
Usol = solve(lapode2,U)
```

Step 4: Inverse transform to find $\mathrm{u}(\mathrm{t})$
usol(t) = ilaplace(Usol,s,t)

The Heaviside and Dirac Delta Functions: The Heaviside function in Matlab is heavisdie(t),

```
heaviside(t)
```

For example

```
laplace(heaviside(t),t,s)
```

A plot:

```
fplot(heaviside(t),[-2,2])
```

The Dirac delta function is given by

```
dirac(t)
```

Example: The mass in a damped spring-mass system with mass 1 kg , damping constant 2 newtons per meter per second, and spring constant 5 newtons per meter is subjected to a constant force of 2 newtons for $0<t<4$ seconds, at which point the force drops to zero. At time $t=6$ seconds the mass is subjected to a hammer blow with total impulse 8 newton-meters. Find the motion of the mass if the mass starts at rest and at equilibrium, and plot this motion for $0<\mathrm{t}<20$ seconds.

The relevant ODE ii

```
syms u(t);
Du = diff(u)
ode = diff(Du) + 2*Du + 5*u(t) == 2 - 2*heaviside(t-4) + 8*dirac(t-6)
```

We can solve exactly as in the second order example above. Transform both sides and substitute in the initial data:

```
syms s;
lapode = laplace(ode,t,s);
Du = diff(u);
lapode2 = subs(lapode,[u(0),Du(0),laplace(u(t),t,s)],[0,0,U])
```

Solve for U and inverse transform

```
Usol = solve(lapode2,U)
usol = simplify(ilaplace(Usol,s,t))
```

A plot:

```
fplot(usol, [0 20])
```

Alternatively, we the dsolve command can handle ODEs with Heaviside and Dirac functions directly, though the solution may appear superficially different.

```
usol2 = simplify(dsolve(ode,[u(0)==0,Du(0)==0]))
simplify(usol-usol2)
fplot(usol2, [0 20])
```

