Shuttlecocks and the Akaike Information Criterion

Kurt Bryan and SIMIODE

A notebook to help explore the project in Section 3．5．4．

The Data：First，the data for the shuttlecock＇s fall，in time（seconds）／distance（meters）pairs：

```
shuttledata = {{0, 0}, {0.347, 0.61}, {0.47, 1.00}, {0.519, 1.22},
    {0.582, 1.52}, {0.650, 1.83}, {0.674, 2.00}, {0.717, 2.13},
    {0.766, 2.44}, {0.823, 2.74}, {0.870, 3.00}, {1.031, 4.00},
    {1.193, 5.00}, {1.354, 6.00}, {1.501, 7.00}, {1.726, 8.50}, {1.873, 9.50}}
```

Number of data points

```
n = Length[shuttledata]
```

A plot
plt1＝ListPlot［shuttledata ，AxesLabel \rightarrow \｛＂Time（seconds）＂，＂Distance（meters）＂\}] The Model：We might posit a model of the form $\mathrm{v}^{\prime}(\mathrm{t})=\mathrm{g}$（ no air resistance）and consider g as an unknown，to be estimated．Then the governing ODE is（from equation（3．68）in the text）

```
de = v'[t] == g
```

The solution with $v(0)=0$ is
sol＝DSolve［\｛de，v［0］＝＝0\}, v, t]
Define this as a function of t
vsol＝v／．sol【1】
Integrate to find position，using $x(0)=0$ where $x(t)$ is the distance the shuttlecock has fallen：
dis＝Integrate［vsol［tau］，\｛tau，0，t\}]
Make this into a function of t
$x\left[t_{-}\right]=d i s$
Estimating Parameters：Form a sum of squares
SS＝Sum［（x［shuttledata 【i，1】］－shuttledata 【i，2】）＾2，\｛i，1，n\}]
Minimize in g．First，a plot
Plot［SS，\｛g，0，15\}]
$2 \mid$

Solve $S S^{\prime}(g)=0$ to find the least-squares estimate for gravitational acceleration
eq = D[SS, g] == 0;
bestg = Solve[eq, g]
The residual is
$\ln [18]:=$ SS /. bestg
A plot to compare the fit of this model to the data:
$\ln [23]:=\mathrm{plt2}=\mathrm{Plot}[x[\mathrm{t}] /$. bestg, $\{\mathrm{t}, 0,1.873\}, \mathrm{PlotSty} \mathrm{le} \rightarrow\{$ Red $\}$;
Show[plt1, plt2]

