Shuttlecocks and the Akaike Information Criterion

Kurt Bryan and SIMIODE

```
> restart;
    with(plots) :
```

A worksheet to help explore the project in Section 3.5.4.
First, the data for the shuttlecock's fall, in time (seconds)/distance (meters) pairs:
$>$ shuttledata $:=[[0,0],[0.347,0.61],[0.47,1.00],[0.519,1.22],[0.582,1.52],[0.650,1.83]$, $[0.674,2.00],[0.717,2.13],[0.766,2.44],[0.823,2.74],[0.870,3.00],[1.031,4.00]$, [1.193, 5.00], $[1.354,6.00],[1.501,7.00],[1.726,8.50],[1.873,9.50]]:$
Number of data points
> $n:=$ nops(shuttledata)
A plot
$>$ plt $1:=$ pointplot(shuttledata, symbol $=$ solidcircle, color $=$ red, symbolsize $=20$, labels = ["time (seconds)", "distance (meters)" $]$, labeldirections $=$ [horizontal, vertical] $)$
We might posit a model of the form $\mathrm{v}^{\prime}(\mathrm{t})=\mathrm{g}$ (no air resistance) and consider g as an unknown, to be estimated. Then the governing ODE is (from equation (3.68) in the text)
$\Rightarrow>d e:=v^{\prime}(t)=g$
[The solution with $v(0)=0$ is
sol $:=\operatorname{rhs}(d$ solve $(\{d e, v(0)=0\}, v(t)))$
Make this into a function of t
vsol $:=$ unapply $(s o l, t)$;
The distance fallen $\mathrm{x}(\mathrm{t})$ by the shuttlecock is (using $\mathrm{x}(0)=0)$
$>x x:=\operatorname{int}(v s o l(\mathrm{tau})$, tau $=0 . . t): \#$ Integrate for position
=Make this into a function of t
$\stackrel{>}{>}:=\operatorname{unapply}(x x, t)$;
EForm a sum of squares
[>SS:=add $\left((x(\text { shuttledata }[j, 1])-\text { shuttledata }[j, 2])^{2}, j=1 . . n\right)$
Minmize in g. First, a plot
$\leftrightarrows \operatorname{plot}(S S, g=0 . .15)$
Solve $\mathrm{SS}^{\prime}(\mathrm{g})=0$ to find the least-squares estimate for gravitational acceleration
$>e q:=\operatorname{diff}(S S, g)=0$;
gest $:=\operatorname{solve}(e q, g)$
The residual is
$[>\operatorname{subs}(g=$ gest, $S S$)
[A plot to compare the fit of this model to the data:
$\Longrightarrow \quad \operatorname{plt} 2:=\operatorname{plot}(\operatorname{subs}(g=$ gest, $x(t)), t=0 . .1 .873$, color $=$ blue $):$
$[>$ display (plt1, plt2)

