Parameter Estimation Example

Kurt Bryan and SIMIODE

A very simple example of fitting a function or model to data by using least squares．

The Data：Here are some hypothetical data in the form of（ t, y ）pairs：
$\ln [1]:=$
$\ln [2]:=$

First form a sum of squares
$f\left[t_{-}\right]=a * \operatorname{Exp}[b * t]$
SS［a＿，b＿］＝Sum［（f［data【j，1】］－data【j，2】）＾2，\｛j，1，5\}]
With only two parameters＂a＂and＂b＂，a visual estimate of the best choice（the choices of a and b that minimize SS）can be found by plotting．It＇s clear that $b<0$ since the data decays，and also that $a>1$ ．A plot of $\log (\mathrm{SS})$ is more informative，though：

Plot3D［Log［SS［a，b］］，\｛a，1，3\}, \{b, -1, 0\}]
Rotate the graph around．Something around $a=2, b=-0.5$ looks promising．

Minimizing the Sum of Squares：The multivariable calculus approach is to find a critical point．Form the appropriate derivatives
dSSda $=\mathrm{D}[S S[a, b], a]$
dSSdb＝D［SS［a，b］，b］
optab $=$ FindRoot［\｛dSSda $=0, \mathrm{dSSdb}=0\},\{\mathrm{a}, 2.0\},\{b,-0.5\}]$
The residual sum of squares is
SS［a，b］／．optab
A plot the best－fit $f(t)$ to compare to the data：

```
bestf[t_] = f[t]/. optab
plt2 = Plot[bestf[t], {t, 1.1, 5.5}, PlotStyle }->\mathrm{ {Red}];
Show[plt1, plt2]
```

