Parameter Estimation Example

Kurt Bryan and SIMIODE

[A very simple example of fitting a function or model to data by using least squares.
$>$ restart;
with(plots) :
[The Data: Here are some hypothetical data in the form of (t, y) pairs:
$>$ data $:=[[1.1,1.24],[1.9,0.83],[2.3,0.71],[4.1,0.29],[5.5,0.15]]$
[A plot of the data:
—> plt1 := pointplot (data, color = red, symbol = solidcircle, symbolsize $=25$, labels = ["t", "y"])
The Model and Sum of Squares: Let's fit a model $f(t)=a * \exp \left(b^{*} t\right)$ to this data by adjusting a and b.
First form a sum of squares
$>f(t):=a \cdot \exp (b \cdot t)$;
$S S:=\operatorname{add}\left((f(\operatorname{data}[j][1])-\operatorname{data}[j][2])^{2}, j=1 . .5\right)$
With only two parameters "a" and " b ", a visual estimate of the best choice (the choices of a and b that minimize SS) can be found by plotting. It's clear that $\mathrm{b}<0$ since the data decays, and also that $\mathrm{a}>1$
$\rightarrow \operatorname{plot} 3 d(S S, a=1 . .3, b=-1$.. 0)
OOr perhaps plotting the log reveals more information
> $\operatorname{plot} 3 d(\ln (S S), a=1 . .3, b=-1 . .0)$
Rotate the graph around. Something around $a=2, b=-0.5$ looks promising.
Minimizing the Sum of Squares: The multivariable calculus approach is to find a critical point. Form the appropriate derivatives
$>d S S d a:=\operatorname{diff}(S S, a)$;
$d S S d b:=\operatorname{diff}(S S, b)$;
and solve for a and b, numerically, with an appropriate initial guess
absols $:=$ fsolve $(\{d S S d a=0, d S S d b=0\},\{a=2, b=-0.5\})$
The residual sum of squares is
$>\operatorname{evalf}(s u b s(a b s o l s, S S))$
EA plot the best-fit $\mathrm{f}(\mathrm{t})$ to compare to the data:
$>\operatorname{plt} 2:=\operatorname{plot}($ subs $($ absols, $f(t)), t=1.1$..5.5, color $=$ blue $):$
display(plt1, plt2)
Alternatively, we can minimize SS with respect to a and b by using Maple's built-in optimization routines. First load the Optimization package:
[> with(Optimization) :
$>$ minsol $:=\operatorname{Minimize}(S S$, initialpoint $=\{a=2, b=-0.5\}$)
The residual is the first output.

