
Numerical Solution of Ordinary Differential Equations

Kurt Bryan and SIMIODE

Example 1: Many ODEs cannot be solved in an analytical or closed-form. For example, consider the

ODE u'(t) = sin(u(t)) - t*u(t):

In[1]:= de = u'[t] ⩵ Sin[u[t]] - t * u[t]

Mathematica can't provide an analytical solution, say with u(0) = 1:

In[2]:= DSolve [{de, u[0] ⩵ 1}, u, t]

Yet the existence-uniqueness theorem applies and guarantees that a solution exists. In this case we can

obtain a numerical approximation to the solution by using the NDSolve command. In this case we'll

solve on the interval t = 0 to t = 5, as

In[15]:= sol = NDSolve [{de, u[0] ⩵ 1}, u, {t, 0, 5}]

To evaluate the solution at a given time t, say t = 2.0, execute

In[4]:= u[2] /. sol

Or we can define "usol[t]" as a function

In[12]:= usol [t_] = u[t] /. sol

In[13]:= usol [2]

To plot the solution evaluate

In[16]:= Plot [Evaluate [u[t] /. sol], {t, 0, 5}, PlotRange → All]

Example 2: The various classical methods---Euler's method, improved Euler (RK2 here), and the RK4

method---can be implemented using the NDSolve command. In each case below the step size is 0.1.

In[17]:= eulersol = NDSolve [{de, u[0] ⩵ 1}, u, {t, 0, 5},

StartingStepSize → 0.1, Method → {"FixedStep ", Method → "ExplicitEuler "}]

In[27]:= rk2sol = NDSolve [{de, u[0] ⩵ 1}, u, {t, 0, 5}, StartingStepSize → 0.1,

Method → {"FixedStep ", Method → {"ExplicitRungeKutta ", "DifferenceOrder " → 2}}]

In[22]:= rk4sol = NDSolve [{de, u[0] ⩵ 1}, u, {t, 0, 5}, StartingStepSize → 0.1,

Method → {"FixedStep ", Method → {"ExplicitRungeKutta ", "DifferenceOrder " → 4}}]

A quick comparison. The numerical solution "sol" is an adaptive step size method and probably the

most accurate.

In[33]:= u[5] /. sol (*Accurate Solution *)

u[5] /. eulersol (*Euler estimate *)

u[5] /. rk2sol (*Improved Euler*)

u[5] /. rk4sol (* RK4 Estimate *)

2

