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Example 1: Many ODEs cannot be solved in an analytical or closed-form. For example, consider the 

ODE u'(t) = sin(u(t)) - t*u(t):

In[1]:= de = u'[t] ⩵ Sin[u[t]] - t * u[t]

Mathematica  can't  provide  an analytical  solution,  say  with  u(0)  = 1:

In[2]:= DSolve [{de, u[0] ⩵ 1}, u, t]

Yet the existence-uniqueness theorem applies and guarantees that a solution exists. In this case we can 

obtain a numerical approximation to the solution by using the NDSolve command. In this case we'll 

solve on the interval t = 0 to t = 5, as

In[15]:= sol = NDSolve [{de, u[0] ⩵ 1}, u, {t, 0, 5}]

To evaluate  the  solution  at a given  time  t, say  t = 2.0,  execute

In[4]:= u[2] /. sol

Or we  can  define  "usol[t]"  as a function

In[12]:= usol [t_] = u[t] /. sol

In[13]:= usol [2]

To plot  the  solution  evaluate

In[16]:= Plot [Evaluate [u[t] /. sol], {t, 0, 5}, PlotRange → All]

Example 2: The various classical methods---Euler's method, improved Euler (RK2 here), and  the RK4 

method---can be implemented using the NDSolve command. In each case below the step size is 0.1.

In[17]:= eulersol = NDSolve [{de, u[0] ⩵ 1}, u, {t, 0, 5},

StartingStepSize → 0.1, Method → {"FixedStep ", Method → "ExplicitEuler "}]

In[27]:= rk2sol = NDSolve [{de, u[0] ⩵ 1}, u, {t, 0, 5}, StartingStepSize → 0.1,

Method → {"FixedStep ", Method → {"ExplicitRungeKutta ", "DifferenceOrder " → 2}}]

In[22]:= rk4sol = NDSolve [{de, u[0] ⩵ 1}, u, {t, 0, 5}, StartingStepSize → 0.1,

Method → {"FixedStep ", Method → {"ExplicitRungeKutta ", "DifferenceOrder " → 4}}]

A quick  comparison.  The  numerical  solution  "sol"  is an adaptive  step  size  method  and  probably  the  

most  accurate.

In[33]:= u[5] /. sol (*Accurate Solution *)

u[5] /. eulersol (*Euler estimate *)

u[5] /. rk2sol (*Improved Euler*)



u[5] /. rk4sol (* RK4 Estimate *)
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