The Mathematics of Marriage

Kurt Bryan and SIMIODE

Here is the data from Table 3.11 for the male 1940-44 cohort, percentage data rescaled to fractions:

```
men4044 = [0.211, 0.661, 0.831, 0.888, 0.912, 0.927, 0.940];
times = [0 [ 5 10 15 20 25 30];
N = length(times);
```

A plot of the data

```
plot(times,men4044)
```

The function $\mathrm{P}(\mathrm{t})$ that might fit this data, according to the model, is

```
syms t;
syms A;
syms b;
P0 = men4044(1);
P(t,A,b)=P0./(P0+(1-P0).*exp(-A*(b.^t-1)./log(b)))
```

Form a sum of squares to fit the data

```
SS(A,b)=sum((P(times,A,b)-men4044).^2);
```

Now minimize in A and b. A contour plot of $\log (S S)$ may be helpful.

```
fcontour(log(SS(A,b)), [llllll}
```

Something near $A=0.6, b=0.9$ looks promising. We can set $d S S / d A=0$ and $d S S / d b=0$ to find this point.

```
dSSdA = diff(SS(A,b),A);
dSSdb = diff(SS(A,b),b);
vpasolve([dSSdA==0,dSSdb==0],[A,b],[0.6,0.9]);
fprintf("A = %f\n",Absol.A)
fprintf("b = %f\n",Absol.b)
```

Plot $\mathrm{P}(\mathrm{t})$ with these values, compare to the data

```
plot(times,men4044)
hold on
fplot(P(t,Absol.A,Absol.b),[0 30],'-r')
```

Here is the data for the 1945-49 men

```
men4549 = [0.223, 0.655, 0.801, 0.861, 0.893, 0.913, 0.925]
```

Here is the data for the 1940-44 women:
women4044 $=[0.481,0.782,0.868,0.897,0.914,0.925,0.932]$
Here is the data for the $1945-49$ women:
women4549 $=[0.431,0.769,0.850,0.884,0.902,0.915,0.922]$

